
Software Engineering Design: Theory and Practice
by Carlos E. Otero

CHAPTER 3: PRINCIPLES OF SOFTWAREARCHITECTURE

SESSION I: FUNDAMENTALS OF SOFTWAREARCHITECTURE

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:

Theory and Practice. Any other reproduction or use is prohibited without the express written

permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/3/2012 1Software Engineering Design: Theory and Practice

SESSION’SAGENDA

� Fundamentals of software architecture

� What is software architecture?

� Why is it important?

� Key tasks in software architecture

� Stakeholders concerns

� Identify architectural views, styles, and patterns

� Identify major component’s and interfaces

� Evaluating and validating the Architecture

� Introducing policies for design synchronicity

� Problem-solving in architecture

� What’s next…

10/3/2012 Software Engineering Design: Theory and Practice 2

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� Let’s get straight to the point, formally, we define software architecture as

� The foundational software design activity that evaluates and translates software
requirements (both functional and non-functional) into a collection of design
elements that specify structural and behavioral aspects of the major components of
the system, together with their provided quality and interrelationships required to
support the detailed design and construction of software systems.

� The product resulting from such activity.

� From this definition, a few things are of interest and need further explanation:

� Foundational design

� Transforming requirements

� Collection of design elements

� Major system components together with their provided quality

� Support detailed design and construction

� Let’s take a more detailed look at these…

10/3/2012 Software Engineering Design: Theory and Practice 3

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� On “… foundational software design…”

� Software architecture provides the groundwork essential for meeting requirements

� This applies to both functional and non-functional requirements.

� This suggest that architecture is not an optional activity or activity performed as a means of
documenting software systems long after they are implemented.

� New development efforts should approach software architecture as a forward engineering
activity that leads to the implementation of systems and not as a reverse engineering mechanism
for documentation.

� As foundational design, it is where designing for quality begins. Not considering quality � As foundational design, it is where designing for quality begins. Not considering quality
attributes of the system during the software architecture activity can be a grave mistake!

� On “…translates software requirements…”

� Requirements is a tricky business! Inexperienced engineers tend not to see the many traps
behind the requirements effort.

� Assuming that every requirement is captured and well understood, design elements need to be
created so that there is a mapping between requirements and design element.

� One design element (e.g., UML component) can be assigned one or more requirements.

� When we do this, we transform one or more requirements from textual form into a graphical
form that represents (in the design domain) the services that need to be provided by the system.

� This allows us to map requirements to design elements and provide the means for tracing
requirements through the development life-cycle.

10/3/2012 Software Engineering Design: Theory and Practice 4

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� More on “…translates software requirements…”

� To create design elements from requirements, it is assumed that requirements
are understood. Sometimes this is not the case.

� For example, some may think that “The system shall perform fast.” specifies a
requirement that can be used to create design elements.

� Such statements create problems for designers. These problems need to be resolved
before we can translate from requirement to design domain.

� This suggest that architects must be proficient in activities related to requirements � This suggest that architects must be proficient in activities related to requirements
engineering. We will cover such situations later on in the course.

� On “…collection of design elements…”

� This suggest that no one structure or diagram can fully describe the software
architecture.

� Think about this: can you evaluate a system’s usability and performance with one
diagram?

� This suggest that architectures are composed of multiple structures.

� We will see examples of this later on…

10/3/2012 Software Engineering Design: Theory and Practice 5

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� On “…major components of the system, together with their provided quality…”

� This suggest that software architecture works at a distinct level of abstraction that differs

from other forms of design, such as detailed design.

� This means that architectural work focuses on the major components, the quality

properties, and services that these components exhibit and provide to other components.

This is an important statement This is an important statement This is an important statement This is an important statement
about Software Architectureabout Software Architectureabout Software Architectureabout Software ArchitectureExample AExample AExample AExample A Example BExample BExample BExample B

10/3/2012 Software Engineering Design: Theory and Practice 6

CmoponentB
<<component>>

ISchedule

I provide an I provide an I provide an I provide an
AlgorithmAlgorithmAlgorithmAlgorithm

IOptimizer

Example AExample AExample AExample A

CmoponentB
<<component>>

ISchedule

I provide an I provide an I provide an I provide an
AlgorithmAlgorithmAlgorithmAlgorithm

IOptimizer

Example BExample BExample BExample B

The architectural effort requires The architectural effort requires The architectural effort requires The architectural effort requires
designers to focus not only on designers to focus not only on designers to focus not only on designers to focus not only on

decomposition, but also on the quality decomposition, but also on the quality decomposition, but also on the quality decomposition, but also on the quality
provided by identified components!provided by identified components!provided by identified components!provided by identified components!

This is equivalent to tagging a This is equivalent to tagging a This is equivalent to tagging a This is equivalent to tagging a
component with important component with important component with important component with important

information, so that its quality information, so that its quality information, so that its quality information, so that its quality
is known by clients using is known by clients using is known by clients using is known by clients using

services from the component. services from the component. services from the component. services from the component.

Component Quality:

Performance: O(n3)

Reusability: Low
…

I guess this

component

will do …

O(n3)!

Yikes!

Client needing a fast algorithmClient needing a fast algorithmClient needing a fast algorithmClient needing a fast algorithm

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� More on “…major components of the system, together with their provided

quality…”

� Expected quality requirements identified during architecture trickles down all the way to

the implementation of components.

� This provides developers with enough information to produce code that meets the system’s

functional and non-functional requirements.

PROCESSING

CodeCodeCodeCode

10/3/2012 Software Engineering Design: Theory and Practice 7

CmoponentB
<<component>>

ISchedule

IN OUT
Detailed

Design

Code

…

Quality requirements Quality requirements Quality requirements Quality requirements
assigned to componentassigned to componentassigned to componentassigned to component

Code meets quality Code meets quality Code meets quality Code meets quality
requirements, per the requirements, per the requirements, per the requirements, per the

specification specification specification specification

ProgrammerProgrammerProgrammerProgrammer

ImportantImportantImportantImportant::::
We are focusing here on quality We are focusing here on quality We are focusing here on quality We are focusing here on quality
requirements, but the same applies requirements, but the same applies requirements, but the same applies requirements, but the same applies
to functional requirementsto functional requirementsto functional requirementsto functional requirements

FUNDAMENTALS OF SOFTWAREARCHITECTURE

� On “…support detailed design and construction…”

� Although architecture focuses on the quality properties of the system, it must also result in a
design that supports efficient detailed design and construction of the system.

� Even though Architects do not need to be proficient in a particular programming language, they benefit
greatly from having proficiency in general programming design concepts.

� This suggests that architecture alone cannot guarantee the quality of the system!

� Since work performed during subsequent activities and phases significantly shapes the system’s
quality, software architecture can only play the initial (indispensible) role of establishing the design
quality framework for the rest of the development process. CodeCodeCodeCode

10/3/2012 Software Engineering Design: Theory and Practice 8

IN OUT

PROCESSING

Detailed

Design

Code

…

ImportantImportantImportantImportant::::
Architecture alone Architecture alone Architecture alone Architecture alone
cannot guarantee cannot guarantee cannot guarantee cannot guarantee
quality!quality!quality!quality!

Code meets Code meets Code meets Code meets ALMOSTALMOSTALMOSTALMOST all all all all
quality requirements, but quality requirements, but quality requirements, but quality requirements, but

not the security ones!not the security ones!not the security ones!not the security ones!

CodeCodeCodeCode

ProgrammerProgrammerProgrammerProgrammer

<<component>>
<<component>>

ClientCollectionSystem
<<component>>

Port2Port1 Port2Port1

ClientManager
<<component>>

ISchedule IScheduleIClientDataIClientData

ISensorControl

SensorManager
<<component>>

IVideoControl

VideoManager
<<component>>

<<delegate>> <<delegate>>

Security

Requirements

I don’t have time for

these silly security

requirements!!

Architect spends time and effort Architect spends time and effort Architect spends time and effort Architect spends time and effort
defining what security means to defining what security means to defining what security means to defining what security means to

customers!customers!customers!customers!

KEYTASKS INARCHITECTURALDESIGN

� From the software architecture definition, we have been able to derive key
tasks that need to be performed during software architecture.

� However, defining the structure of software systems requires consideration of
many other project-specific aspects and how those aspects relate to the
organization’s goals.

� Formally, key tasks that need to be performed during the software architecture
design effort include:

� Identifying stakeholders concern� Identifying stakeholders concern

� Identifying appropriate architectural views

� Identifying architectural styles and patterns

� Identifying influences of architectural decisions in organizations

� Identifying the system’s major components and interfaces

� Evaluating and validating the architecture

� Establishing policies for ensuring architectural design synchronicity

� Let’s discuss these in more detail…

10/3/2012 Software Engineering Design: Theory and Practice 9

KEYTASKS INARCHITECTURALDESIGN

� Identifying stakeholders concerns

� Stakeholders are persons, groups, or organizations that have a direct or indirect

stake in the system.

� They include systems engineers, software engineers, hardware engineers, project

management, customers, testing teams, quality assurance teams, members of the

configuration management team, etc.

� A stakeholder’s concern provides high-level information about desired � A stakeholder’s concern provides high-level information about desired

characteristics of the software system.

� The software architect must ensure that the software to be developed addresses the

concerns of all stakeholders.

� Stakeholders’ concerns serve as driving force behind architectural decisions

� The software architect must identify and understand the different ways

stakeholders influence the system.

� These need to be elicited before any design effort can begin.

10/3/2012 Software Engineering Design: Theory and Practice 10

ImportantImportantImportantImportant::::
Stakeholders’ concerns serve as driving Stakeholders’ concerns serve as driving Stakeholders’ concerns serve as driving Stakeholders’ concerns serve as driving
force for architectural decisionsforce for architectural decisionsforce for architectural decisionsforce for architectural decisions

KEYTASKS INARCHITECTURALDESIGN

� So far, we’ve vaguely mentioned the concepts of quality and stakeholders’ concerns.
� These high-level concerns are often related to the desired quality of the system.

� Let’s formally define some important quality attributes of software systems.

Quality Description

Usability The degree of complexity involved when learning or using the system.

Modifiability The degree of complexity involved when changing the system to fit current or future needs.

Security The system’s ability to protect and defend its information or information system.

� Notice that these quality attributes also describe high-level information about desired
characteristics of the software system.
� In their current form, they are not sufficient to develop the system.

� For a system to exhibit any of these qualities, design decisions must be made to support the
achievement of these qualities. These design decisions are referred by Bass, Clements, and Kazman
as Tactics [1].

10/3/2012 Software Engineering Design: Theory and Practice 11

Performance The system’s capacity to accomplish useful work under time and resource constraints.

Reliability The system’s failure rate.

Portability The degree of complexity involved when adapting the system to other software or hardware environments.

Testability The degree of complexity involved when verifying and validating the system’s required functions.

Availability The system’s uptime.

Interoperability The system’s ability to collaborate with other software or hardware systems.

KEYTASKS INARCHITECTURALDESIGN

� According to Bass, Clements, and Kazman, a tactic is a design decision

that influences the control of a quality attribute response [1].

I want usability! Tactic #2: Provide cancel option

Tactic #1: Support undoable operations
I have some ideas. Let’s discuss

so that we can come up with

usability requirements.

CustomerCustomerCustomerCustomer

10/3/2012 Software Engineering Design: Theory and Practice 12

Software ArchitectSoftware ArchitectSoftware ArchitectSoftware Architect

CustomerCustomerCustomerCustomer

Software ArchitectSoftware ArchitectSoftware ArchitectSoftware Architect

CustomerCustomerCustomerCustomer

ImportantImportantImportantImportant::::
In many cases, these quality goals fall through the requirement phase,In many cases, these quality goals fall through the requirement phase,In many cases, these quality goals fall through the requirement phase,In many cases, these quality goals fall through the requirement phase,
Leaving the architect responsible for specifying requirements to meetLeaving the architect responsible for specifying requirements to meetLeaving the architect responsible for specifying requirements to meetLeaving the architect responsible for specifying requirements to meet
these quality attributes. During this process, tactics are identified for these quality attributes. During this process, tactics are identified for these quality attributes. During this process, tactics are identified for these quality attributes. During this process, tactics are identified for
each desired quality attribute.each desired quality attribute.each desired quality attribute.each desired quality attribute.

KEYTASKS INARCHITECTURALDESIGN

� Tactics for Security [1]
� Resisting Attacks

� Authenticating users, Limit exposure, Limit access, only on need-to-know basis , etc.

� Detecting Attacks
� Intrusion detection

� Tactics for Testability
� Event logging

� Log data and operations throughout the system. Allow testers to enable/disable this feature so that when
enabled, events are displayed in the console to give insight into the system’s operations and data.

� Tactics for Modifiability [1]
� Localize changes

� Modularization, abstraction, encapsulation

� Prevention of ripple effects
� Encapsulation, reduce coupling

� Tactics for Availability
� Redundancy, Task monitor, Watchdog timer , etc.

� Tactics for Performance [1]
� Increase computation efficiency, reduce computational overhead, introduce concurrency, etc.

10/3/2012 Software Engineering Design: Theory and Practice 13

KEYTASKS INARCHITECTURALDESIGN

� Identifying appropriate architectural views

� In complex software systems, there can be numerous stakeholders with different backgrounds.

� These stakeholders have different perception about the system, which influence the way they
evaluate the system’s design

� For this reason, architectural designs must support different architectural views used to evaluate
the design from a particular stakeholder’s perspective.

� An architectural view is a representation of the system.

� Different representations are required to evaluate certain properties of the system.

10/3/2012 Software Engineering Design: Theory and Practice 14

View 1View 1View 1View 1

This view is appropriate This view is appropriate This view is appropriate This view is appropriate
to evaluate the system’s to evaluate the system’s to evaluate the system’s to evaluate the system’s

usabilityusabilityusabilityusability

This view is appropriate to This view is appropriate to This view is appropriate to This view is appropriate to
evaluate the system’s evaluate the system’s evaluate the system’s evaluate the system’s

reusabilityreusabilityreusabilityreusability

View 2View 2View 2View 2The same system from two The same system from two The same system from two The same system from two
different viewsdifferent viewsdifferent viewsdifferent views

We’ll see more relevant We’ll see more relevant We’ll see more relevant We’ll see more relevant
views during session 3views during session 3views during session 3views during session 3

KEYTASKS INARCHITECTURALDESIGN

� Identifying Architectural Styles and Patterns
� The concept of architectural styles and patterns are fundamental to the efficient creation of software

architectures.

� They provide an overall strategy for designing a family of software systems.

� They provide reusable architectural solutions, documented in a way that is easily understood and
applied.

� For this reason, from the logical perspective, this is one of the first tasks performed during architecture.

� Decisions based on styles and patterns benefit from years of documented experience.

� Today, numerous styles and patterns exist so architects must be aware of these so that they can
identify and determine the appropriateness of a particular style or pattern for their system’s design.

� Identifying System Interfaces
� Interfaces are defined for components residing within single physical nodes within a single or

different process space, or for components residing on different physical nodes.

� Identifying Impact of Architectural Decisions in Organization
� Impact on customer base

� Impact on budget and schedule

� Impact on resource availability

10/3/2012 Software Engineering Design: Theory and Practice 15

ImportantImportantImportantImportant::::
Don’t get stuck on terminology! As you will see later on, Don’t get stuck on terminology! As you will see later on, Don’t get stuck on terminology! As you will see later on, Don’t get stuck on terminology! As you will see later on, Architectural Architectural Architectural Architectural
Styles Styles Styles Styles and and and and Architectural PatternsArchitectural PatternsArchitectural PatternsArchitectural Patterns refer to similar concept. During Detailed refer to similar concept. During Detailed refer to similar concept. During Detailed refer to similar concept. During Detailed
Design, you will also hear about Design, you will also hear about Design, you will also hear about Design, you will also hear about Design PatternsDesign PatternsDesign PatternsDesign Patterns!!!!

KEYTASKS INARCHITECTURALDESIGN

� Evaluating and Validating the Architecture

� Long and iterative process

� Failure to do so can have significant impact in effort and cost incurred to develop the system.

� It is well known that defects found earlier on in the development process take much less effort to
correct than if found at later stages.

� The result should determine if the software architecture is sufficiently complete to support the
development of the system.

� We’ll have more to say about this later on in the course…

� Introduce Policies for Design Synchronicity

� Design synchronicity is a measurement of the degree of how well the software implementation
reflects its design, both in architectural form and detailed design form.

� Obviously, we want high synchronicity, but this is not always the case.

� It is very easy to deviate from design, especially on multi-year efforts.

� For any software architecture effort to result in successful implementation, all subsequent
phases and activities must be synchronized with the architecture.

� To do this, a well-defined and understood process must be in place.

� This includes the maintenance phase, which can go on for years after a software has been
deployed!

10/3/2012 Software Engineering Design: Theory and Practice 16

PROBLEM SOLVING DURINGARCHITECTURE

Evaluate

Constraints
Document

Schedule Constraints,

Cost Constraints,

Quality Constraints

Requirements,

System Goals,

Scenarios
Architectural Designs,

Documentation

These define the problem These define the problem These define the problem These define the problem
and product constraintsand product constraintsand product constraintsand product constraints

Other project related Other project related Other project related Other project related
constraintsconstraintsconstraintsconstraints

For example, we will reuse our homeFor example, we will reuse our homeFor example, we will reuse our homeFor example, we will reuse our home----grown class grown class grown class grown class
framework to leverage our expertise and develop faster!framework to leverage our expertise and develop faster!framework to leverage our expertise and develop faster!framework to leverage our expertise and develop faster!

Another example, we will buy and Another example, we will buy and Another example, we will buy and Another example, we will buy and
integrate xyz library into our product integrate xyz library into our product integrate xyz library into our product integrate xyz library into our product

instead of developing it ourselvesinstead of developing it ourselvesinstead of developing it ourselvesinstead of developing it ourselves

10/3/2012 Software Engineering Design: Theory and Practice 17

Constraints

Architectural

Design

Interpret

Problem
Evaluate

Collaborative

Brainstorming

Document

Resources Activities Controls

Scenarios Documentation

Unfortunately, these are rarely Unfortunately, these are rarely Unfortunately, these are rarely Unfortunately, these are rarely
complete on the first shot!complete on the first shot!complete on the first shot!complete on the first shot!

Development team, Development team, Development team, Development team,
modeling software, modeling software, modeling software, modeling software,
IDEs, hardware, etc.IDEs, hardware, etc.IDEs, hardware, etc.IDEs, hardware, etc.

Tasks performed to Tasks performed to Tasks performed to Tasks performed to
process the requirementsprocess the requirementsprocess the requirementsprocess the requirements
Example: Design ReviewExample: Design ReviewExample: Design ReviewExample: Design Review

These dictate how, These dictate how, These dictate how, These dictate how,
when, and where when, and where when, and where when, and where

activities are activities are activities are activities are
performed!performed!performed!performed!

Controls Examples:Controls Examples:Controls Examples:Controls Examples:
1. Design reviews must be scheduled 1. Design reviews must be scheduled 1. Design reviews must be scheduled 1. Design reviews must be scheduled
with one week of anticipationwith one week of anticipationwith one week of anticipationwith one week of anticipation
2. Software Quality Assurance 2. Software Quality Assurance 2. Software Quality Assurance 2. Software Quality Assurance
personnel must be present during personnel must be present during personnel must be present during personnel must be present during
review.review.review.review.
3. Review of material containing 3. Review of material containing 3. Review of material containing 3. Review of material containing
classified information must occur classified information must occur classified information must occur classified information must occur
inside a vaultinside a vaultinside a vaultinside a vault

WHAT’S NEXT…

� In this session, we presented fundamentals concepts of software

architecture and key tasks that need to be performed during software

architecture, including:

� Identifying stakeholders concerns

� Identify architectural views, styles, and patterns

� Identify major component’s and interfaces

� Evaluating and validating the Architecture� Evaluating and validating the Architecture

� Introducing policies for design synchronicity

� We’ve also mentioned issues with software quality and requirements, but

we have not presented the details involved in actually generating good

requirements in case that (as architects) we are presented with this problem.

� Next session will focus on requirements engineering, providing enough

information to successfully create good requirements.

10/3/2012 Software Engineering Design: Theory and Practice 18

REFERENCES

� [1] Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in

Practice, 2d ed. Boston: Addison-Wesley, 2003.

10/3/2012 Software Engineering Design: Theory and Practice 19

