
Software Engineering Design: Theory and Practice
by Carlos E. Otero

CHAPTER 4: PATTERNS AND STYLES IN

SOFTWAREARCHITECTURE

SESSION II: DATA-CENTERED, DATA-FLOW, AND DISTRIBUTED SYSTEMS

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:

Theory and Practice. Any other reproduction or use is prohibited without the express written

permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/3/2012 1Software Engineering Design: Theory and Practice

SESSION’SAGENDA

� Data-Centered Systems

� Overview

� Patterns

� Blackboard

� Data Flow Systems

� Overview

� Patterns

� Pipes-and-Filters

� Distributed Systems

� Overview

� Patterns

� Client Server

� What’s next…

� Distributed systems – Broker Pattern

� Interactive Systems

� Hierarchical Systems

10/3/2012 Software Engineering Design: Theory and Practice 2

DATA-CENTERED SYSTEMS

� Data-centered systems are systems primarily decomposed around a main central
repository of data. These include:

� Data management component

� The data management component controls, provides, and manages access to the system’s data.

� Worker components

� Worker components execute operations and perform work based on the data.

� Communication in data-centered systems is characterized by a one-to-one bidirectional
communication between a worker component and the data management component.communication between a worker component and the data management component.

� Worker components do not interact with each other directly; all communication goes through
the data management component.

10/3/2012 Software Engineering Design: Theory and Practice 3

Worker 1 Worker 2

Data Manager

Two way Two way Two way Two way
communicationcommunicationcommunicationcommunication

Data repositoryData repositoryData repositoryData repository
Manages dataManages dataManages dataManages data

DATA-CENTERED SYSTEMS

� Because of the architecture of these systems, they must consider issues with:

� Data integrity

� Communication protocols between worker and data management

� Transactions and recovery (also known as roll-back)

� Security

Worker 1 Worker 2 1.1.1.1. Communication ProtocolCommunication ProtocolCommunication ProtocolCommunication Protocol

� A common architectural pattern for data-centered systems is the Blackboard

Pattern.

10/3/2012 Software Engineering Design: Theory and Practice 4

Data Manager

1.1.1.1. Communication ProtocolCommunication ProtocolCommunication ProtocolCommunication Protocol
2.2.2.2. SecuritySecuritySecuritySecurity

Data IntegrityData IntegrityData IntegrityData Integrity1.1.1.1. Transactions and RecoveryTransactions and RecoveryTransactions and RecoveryTransactions and Recovery
2.2.2.2. SecuritySecuritySecuritySecurity

1.1.1.1. Communication ProtocolCommunication ProtocolCommunication ProtocolCommunication Protocol
2.2.2.2. SecuritySecuritySecuritySecurity

BLACKBOARDARCHITECTURAL PATTERN

� Blackboard decomposes systems into components that work around a central data
component to provide solutions to complex problems.
� These components work independently from each other to provide partial solutions to problems

using an opportunistic problem-solving approach.

� That is, there are no predetermined, or correct, sequences of operations for reaching the
problem’s solution.

� The Blackboard architectural pattern resembles the approach a group of scientists would
employ to solve a complex problem.
� Consider a group of scientists at one location using a blackboard (chalkboard, whiteboard, or � Consider a group of scientists at one location using a blackboard (chalkboard, whiteboard, or

electronic blackboard) to solve a complex problem.

� Assume that to manage the problem-solving process, a mediator controls access to the
blackboard.

� Once the mediator (or controller) assigns control to the blackboard, a scientist evaluates the
current state of the problem and if possible, advances its solution before releasing control of the
blackboard.

� With new knowledge obtained from the previous solution attempt, control is assigned to the
next scientist who can further improve the problems’ state.

� This process continues until no more progress can be made, at which point the blackboard
system reaches a solution.

� This behavior is prevalent in expert systems, therefore, the Blackboard architectural
pattern is a good choice for depicting the logical architecture of expert systems.

10/3/2012 Software Engineering Design: Theory and Practice 5

BLACKBOARDARCHITECTURAL PATTERN

ControllerControllerControllerController

The actual blackboard. In this The actual blackboard. In this The actual blackboard. In this The actual blackboard. In this
example, this is the data repositoryexample, this is the data repositoryexample, this is the data repositoryexample, this is the data repository

Agent 4 waits for his turnAgent 4 waits for his turnAgent 4 waits for his turnAgent 4 waits for his turn

Agents cannot Agents cannot Agents cannot Agents cannot
access blackboard access blackboard access blackboard access blackboard
until access is until access is until access is until access is
granted by granted by granted by granted by
controller.controller.controller.controller.

10/3/2012 Software Engineering Design: Theory and Practice 6

Access to the blackboard has Access to the blackboard has Access to the blackboard has Access to the blackboard has
been granted to Agent 1been granted to Agent 1been granted to Agent 1been granted to Agent 1

Agent 1Agent 1Agent 1Agent 1

Agent 1 advances the solution!Agent 1 advances the solution!Agent 1 advances the solution!Agent 1 advances the solution!Agent 2 waits for his turnAgent 2 waits for his turnAgent 2 waits for his turnAgent 2 waits for his turn

Agent 3 waits for his turnAgent 3 waits for his turnAgent 3 waits for his turnAgent 3 waits for his turn

BLACKBOARDARCHITECTURAL PATTERN

� Consider the Students’ Scheduling System from Chapter 4.

ControllerControllerControllerController

10/3/2012 Software Engineering Design: Theory and Practice 7

AgentsAgentsAgentsAgents

BlackboardBlackboardBlackboardBlackboard

BLACKBOARDARCHITECTURAL PATTERN

The The The The StudentHistoryStudentHistoryStudentHistoryStudentHistory agent agent agent agent
retrieves the dataretrieves the dataretrieves the dataretrieves the data

The The The The StudentHistoryStudentHistoryStudentHistoryStudentHistory agent agent agent agent
modifies the schedule and modifies the schedule and modifies the schedule and modifies the schedule and

Controller grants schedule access Controller grants schedule access Controller grants schedule access Controller grants schedule access
to the to the to the to the StudentHistoryStudentHistoryStudentHistoryStudentHistory agentagentagentagent

Client requests a Client requests a Client requests a Client requests a
scheduleschedulescheduleschedule

Controller grants schedule access Controller grants schedule access Controller grants schedule access Controller grants schedule access

10/3/2012 Software Engineering Design: Theory and Practice 8

modifies the schedule and modifies the schedule and modifies the schedule and modifies the schedule and
stores the results backstores the results backstores the results backstores the results back

Controller grants schedule access Controller grants schedule access Controller grants schedule access Controller grants schedule access
to the to the to the to the CourseOfferingsCourseOfferingsCourseOfferingsCourseOfferings agentagentagentagent

The The The The CourseOfferingsCourseOfferingsCourseOfferingsCourseOfferings agent agent agent agent
retrieves, modifies, and retrieves, modifies, and retrieves, modifies, and retrieves, modifies, and
stores the schedule backstores the schedule backstores the schedule backstores the schedule back

Controller grants schedule access Controller grants schedule access Controller grants schedule access Controller grants schedule access
to the to the to the to the WorkScheduleWorkScheduleWorkScheduleWorkSchedule agentagentagentagent

Client receives an Client receives an Client receives an Client receives an
optimized scheduleoptimized scheduleoptimized scheduleoptimized schedule

This note provides This note provides This note provides This note provides
important information!important information!important information!important information!

BLACKBOARDARCHITECTURAL PATTERN

� Quality properties of the Blackboard architectural pattern include the ones

specified below.

� An important aspect of the Blackboard and any other architectural pattern

is their deployment aspect (i.e., the deployment view). For example, It is

not easily determined from the logical view where each agent or

blackboard component reside.

� Depending on their location, Blackboard can have increased complexity when

managing communication between agents, controller, and blackboard.

10/3/2012 Software Engineering Design: Theory and Practice 9

DATA FLOW SYSTEMS

� Data flow systems are decomposed around the central theme of transporting data (or data
streams) and transforming the data along the way to meet application-specific
requirements.
� Typical responsibilities found in components of data-flow systems include:

� Worker components, those that perform work on data

� Transport components, those that transporting data

� Worker components abstract data transformations and processing that need to take place
before forwarding data streams in the system, e.g.,
� Encryption and decryption� Encryption and decryption

� Compression and decompression

� Changing data format, e.g. ,from binary to XML, from raw data to information, etc.

� Enhancing, modifying, storing, etc. of the data

� Transport components abstract the management and control of the data transport
mechanisms, which could include:
� Inter-process communication

� Sockets, serial, pipes, etc.

� Intra-process communication
� Direct function call, etc.

� An example of an architectural pattern for data flow systems is the Pipes-and-Filters.

10/3/2012 Software Engineering Design: Theory and Practice 10

PIPES-AND-FILTERSARCHITECTURAL PATTERN

� Pipes-and-Filters is composed of the following components:
� Data source

� Produces the data

� Filter
� Processes, enhances, modifies, etc. the data

� Pipes
� Provide connections between data source and filter, filter to filter, and filter to data sink.

� Data Sink
� Data consumer Not an UML diagram!Not an UML diagram!Not an UML diagram!Not an UML diagram!

10/3/2012 Software Engineering Design: Theory and Practice 11

Data source produces the dataData source produces the dataData source produces the dataData source produces the data

Pipes used to move the data!Pipes used to move the data!Pipes used to move the data!Pipes used to move the data!

Important:Important:Important:Important:
The abstractions used in the boxThe abstractions used in the boxThe abstractions used in the boxThe abstractions used in the box----andandandand----
line diagram above for Pipes can be line diagram above for Pipes can be line diagram above for Pipes can be line diagram above for Pipes can be
deceiving, since they really do not deceiving, since they really do not deceiving, since they really do not deceiving, since they really do not
convey the real identity of these convey the real identity of these convey the real identity of these convey the real identity of these
mechanisms!mechanisms!mechanisms!mechanisms!

Filters work on the data!Filters work on the data!Filters work on the data!Filters work on the data!

Data is moved and processed Data is moved and processed Data is moved and processed Data is moved and processed
along the way until it reaches along the way until it reaches along the way until it reaches along the way until it reaches
its destination, the Data Sink.its destination, the Data Sink.its destination, the Data Sink.its destination, the Data Sink.

PIPES-AND-FILTERSARCHITECTURAL PATTERN

� A common example for the Pipes-and-Filters pattern:

� Architecture of a Language Processor (e.g., compiler, interpreter)

Lexical Analyzer Parser Code Generator Optimizer

Lexical analyzer Lexical analyzer Lexical analyzer Lexical analyzer
produces tokensproduces tokensproduces tokensproduces tokens

Parser produces Parser produces Parser produces Parser produces
parse treesparse treesparse treesparse trees Generates code, e.g., Generates code, e.g., Generates code, e.g., Generates code, e.g.,

ImportantImportantImportantImportant::::
Not a UML Diagram!Not a UML Diagram!Not a UML Diagram!Not a UML Diagram!

10/3/2012 Software Engineering Design: Theory and Practice 12

produces tokensproduces tokensproduces tokensproduces tokens parse treesparse treesparse treesparse trees Generates code, e.g., Generates code, e.g., Generates code, e.g., Generates code, e.g.,
machine languagemachine languagemachine languagemachine language

Optimizes codeOptimizes codeOptimizes codeOptimizes code

It would be cool to build

an interpreter… I know,

let’s reuse the

components that we

already have!

Lexical Analyzer Parser Optimizer Interpreter

Lexical analyzer Lexical analyzer Lexical analyzer Lexical analyzer
produces tokensproduces tokensproduces tokensproduces tokens

Parser produces Parser produces Parser produces Parser produces
parse treesparse treesparse treesparse trees

Run the Run the Run the Run the
programprogramprogramprogram

Optimizes Optimizes Optimizes Optimizes
interpreted form interpreted form interpreted form interpreted form
of the programof the programof the programof the program

Reused Reused Reused Reused
componentcomponentcomponentcomponent

PIPES-AND-FILTERSARCHITECTURAL PATTERN

ImportantImportantImportantImportant::::
A UML Diagram!A UML Diagram!A UML Diagram!A UML Diagram!

Lexical

Analyzer
Parser

Code

Generator
Optimizer

FiltersFiltersFiltersFilters

10/3/2012 Software Engineering Design: Theory and Practice 13

In this example, the In this example, the In this example, the In this example, the
Pipes are simply Pipes are simply Pipes are simply Pipes are simply
function calls!function calls!function calls!function calls!

PIPES-AND-FILTERSARCHITECTURAL PATTERN

� Consider software that houses algorithms for automatically determining the identity of an
individual:
� The software access videos (with audio) from You Tube

� The software detects faces of individuals in the video
� Face detection is used to determine if a face is in the video

� The software recognizes faces speech from the video
� Face recognition is used to determine the identity of the person from the detected face.

� Based on detection and recognition, the software predicts the identity of individuals in the video

� Using the pipes and filters architecture, the logical structure of the system can be modeled as � Using the pipes and filters architecture, the logical structure of the system can be modeled as
follows:

10/3/2012 Software Engineering Design: Theory and Practice 14

Youtube Manager Face Detection Face Recognition Identity Manager

Big video file!Big video file!Big video file!Big video file! Transformed data containing only Transformed data containing only Transformed data containing only Transformed data containing only
the information from detected faces!the information from detected faces!the information from detected faces!the information from detected faces!

Transformed data containing only Transformed data containing only Transformed data containing only Transformed data containing only
the results from the recognition the results from the recognition the results from the recognition the results from the recognition
process, e.g., a report of identity!process, e.g., a report of identity!process, e.g., a report of identity!process, e.g., a report of identity!

Important:Important:Important:Important:
Consider what would happen Consider what would happen Consider what would happen Consider what would happen
if a better algorithm for if a better algorithm for if a better algorithm for if a better algorithm for
recognition is discovered?recognition is discovered?recognition is discovered?recognition is discovered?

Joe Developer

Wanted!

Wanted!

PIPES-AND-FILTERSARCHITECTURAL PATTERN

� In the previous example, the box-and-line diagram was useful for visualizing
the components in the system, however, it conveyed nothing about how data is
transported from one Filter to the next, i.e., the Pipes.
� Consider the following UML component for the same system

FileSystemManager
<<component>>

In this system, data is moved through In this system, data is moved through In this system, data is moved through In this system, data is moved through
the File System using a mechanism the File System using a mechanism the File System using a mechanism the File System using a mechanism

This component may reuse existing This component may reuse existing This component may reuse existing This component may reuse existing
mechanisms to facilitate data movement, mechanisms to facilitate data movement, mechanisms to facilitate data movement, mechanisms to facilitate data movement,
for example, the for example, the for example, the for example, the .NET FileSystemWatcher.NET FileSystemWatcher.NET FileSystemWatcher.NET FileSystemWatcher....

This interface encapsulates This interface encapsulates This interface encapsulates This interface encapsulates
the FileSystemWatcher and the FileSystemWatcher and the FileSystemWatcher and the FileSystemWatcher and

10/3/2012 Software Engineering Design: Theory and Practice 15

VideoManager
<<component>>

IdentityManager
<<component>>

FaceDetection
<<component>>

FaceRecognition
<<component>>

FileSystemManager

IFileSystemPipe IFileSystemPipe IFileSystemPipe IFileSystemPipe

the File System using a mechanism the File System using a mechanism the File System using a mechanism the File System using a mechanism
that relies on monitoring of new files!that relies on monitoring of new files!that relies on monitoring of new files!that relies on monitoring of new files!

These components require monitoring of directories from the File These components require monitoring of directories from the File These components require monitoring of directories from the File These components require monitoring of directories from the File
System Manager. When a new file is detected, the File System System Manager. When a new file is detected, the File System System Manager. When a new file is detected, the File System System Manager. When a new file is detected, the File System

Manger fires an event, indicating that a new file has been Manger fires an event, indicating that a new file has been Manger fires an event, indicating that a new file has been Manger fires an event, indicating that a new file has been
received, which triggers some processing by the Filter components.received, which triggers some processing by the Filter components.received, which triggers some processing by the Filter components.received, which triggers some processing by the Filter components.

This interface encapsulates This interface encapsulates This interface encapsulates This interface encapsulates
the FileSystemWatcher and the FileSystemWatcher and the FileSystemWatcher and the FileSystemWatcher and
provides other services for provides other services for provides other services for provides other services for
creating, deleting, reading creating, deleting, reading creating, deleting, reading creating, deleting, reading

and writing files. and writing files. and writing files. and writing files.

Warning:Warning:Warning:Warning:
This is This is This is This is notnotnotnot the typical example that you the typical example that you the typical example that you the typical example that you
would find for Pipeswould find for Pipeswould find for Pipeswould find for Pipes----andandandand----Filters. However, Filters. However, Filters. However, Filters. However,
it displays the inherent flexibility present it displays the inherent flexibility present it displays the inherent flexibility present it displays the inherent flexibility present
when employing architectural patterns.when employing architectural patterns.when employing architectural patterns.when employing architectural patterns.

A more detailed example of the A more detailed example of the A more detailed example of the A more detailed example of the
message exchanges in the examplemessage exchanges in the examplemessage exchanges in the examplemessage exchanges in the example

Register with the file system managerRegister with the file system managerRegister with the file system managerRegister with the file system manager

YoutubeYoutubeYoutubeYoutube video file found! video file found! video file found! video file found!
Transport the file to the next Transport the file to the next Transport the file to the next Transport the file to the next

component via the file system.component via the file system.component via the file system.component via the file system.

This triggers This triggers This triggers This triggers
and event!and event!and event!and event!

: VideoManager : FaceDetection : FaceRecognition : IdentityManager : FileSystemManager

10/3/2012 Software Engineering Design: Theory and Practice 16

Notify anyone Notify anyone Notify anyone Notify anyone
registered for registered for registered for registered for
monitoring of monitoring of monitoring of monitoring of
this directorythis directorythis directorythis directory

Do work using the data from Do work using the data from Do work using the data from Do work using the data from
the file, save the results on the the file, save the results on the the file, save the results on the the file, save the results on the
file system so that the process file system so that the process file system so that the process file system so that the process
can repeat again with the next can repeat again with the next can repeat again with the next can repeat again with the next

component / filter.component / filter.component / filter.component / filter.

Identity Identity Identity Identity
determined!determined!determined!determined!

YoutubeManager
<<component>>

FaceRecognition
<<component>>

IVideoPipe

VideoManager
<<component>>

Consider the PipesConsider the PipesConsider the PipesConsider the Pipes----andandandand----Filters Filters Filters Filters
modeled this waymodeled this waymodeled this waymodeled this way

Assume now that unlike the Assume now that unlike the Assume now that unlike the Assume now that unlike the
previous example, the Video previous example, the Video previous example, the Video previous example, the Video

component now interfaces with a component now interfaces with a component now interfaces with a component now interfaces with a
camera for realcamera for realcamera for realcamera for real----time video feed!time video feed!time video feed!time video feed!

Filter ComponentFilter ComponentFilter ComponentFilter Component
Filter ComponentFilter ComponentFilter ComponentFilter ComponentPipe InterfacePipe InterfacePipe InterfacePipe Interface

Other Pipes

and Filters in

the System

When modeled this way, there are When modeled this way, there are When modeled this way, there are When modeled this way, there are
implications about the internal implications about the internal implications about the internal implications about the internal
structure of these components! structure of these components! structure of these components! structure of these components!

For example, see belowFor example, see belowFor example, see belowFor example, see below

VideoManager
<<component>>

FaceDetection
<<component>>

WorkerComponent
<<component>>

TransportComponent
<<component>>

IVideoPipe IStreamPipeIStreamPipe

10/3/2012 Software Engineering Design: Theory and Practice 17

<<delegate>>
<<delegate>>

Provided interface to transport the Provided interface to transport the Provided interface to transport the Provided interface to transport the
data stream to the next componentdata stream to the next componentdata stream to the next componentdata stream to the next component

PipePipePipePipe

FilterFilterFilterFilter

Similarly, since PipesSimilarly, since PipesSimilarly, since PipesSimilarly, since Pipes----andandandand----Filters specify the separation between Filters specify the separation between Filters specify the separation between Filters specify the separation between
pipes and filters, there is an implication about the existence of pipes and filters, there is an implication about the existence of pipes and filters, there is an implication about the existence of pipes and filters, there is an implication about the existence of
both pipe and Filter component inside the Video Managerboth pipe and Filter component inside the Video Managerboth pipe and Filter component inside the Video Managerboth pipe and Filter component inside the Video Manager

PIPES-AND-FILTERSARCHITECTURAL PATTERN

� Quality properties of the Pipes-and-Filters architectural pattern include the

ones specified below.

10/3/2012 Software Engineering Design: Theory and Practice 18

DISTRIBUTED SYSTEMS

� Distributed systems are decomposed into multiple processes that (typically) collaborate
through the network.

� These systems are ubiquitous in today’s modern systems thanks to wireless, mobile, and
internet technology.

� In some distributed systems, one or more distributed processes perform work on behalf of client
users and provide a bridge to some server computer, typically located remotely and performing
work delegated to it by the client part of the system.

� Other distributed systems may be composed of peer nodes, each with similar capabilities and
collaborating together to provide enhanced services, such as music-sharing distributed
applications.applications.

� These types of distributed systems are easy to spot, since their deployment architecture entails
multiple physical nodes.

� However, with the advent of multi-core processors, distributed architectures are also relevant to
software that executes on a single node with multiprocessor capability.

� Some examples of distributed systems include:

� Internet systems, web services, file- or music-sharing systems, high-performance systems, etc.

� Common architectural patterns for distributed systems include:

� Client-Server Pattern

� Broker Pattern

10/3/2012 Software Engineering Design: Theory and Practice 19

CLIENT-SERVER PATTERN

10/3/2012 Software Engineering Design: Theory and Practice 20

CLIENT-SERVER PATTERN

� Quality properties of the Blackboard architectural pattern include the ones

specified below.

10/3/2012 Software Engineering Design: Theory and Practice 21

WHAT’S NEXT…

� In this session, we presented fundamentals concepts of data-centered , data

flow, and distributed systems, together with essential architectural patterns

for these systems, including:

� Blackboard

� Pipes-and-Filters

� Client-server

� In the next session, we will continue the discussion of distributed systems

and present in depth two other types of systems (i.e., Interactive and

Hierarchical) together with architectural patterns, including:

� Model-View-Controller

� Layered

� Main program and subroutine

10/3/2012 Software Engineering Design: Theory and Practice 22

