CHAPTER 4: PATTERNS AND STYLES IN
SOFTWARE ARCHITECTURE

SESSION II: DATA-CENTERED, DATA-FLOW, AND DISTRIBUTED SYSTEMS

10/3/2012

Software Engineering Design: Theory and Practice
by Carlos E. Otero

Software
Engineering
Design

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

Software Engineering Design.: Theory and Practice




SESSION’S AGENDA

» Data-Centered Systems
v' Overview

v’ Patterns
=  Blackboard

» Data Flow Systems
v' Overview

v' Patterns
* Pipes-and-Filters

» Distributed Systems
v' Overview
v Patterns
= (Client Server

» What’s next...
v' Distributed systems — Broker Pattern
v' Interactive Systems
v’ Hierarchical Systems

10/3/2012 Software Engineering Design: Theory and Practice



DATA-CENTERED SYSTEMS

» Data-centered systems are systems primarily decomposed around a main central
repository of data. These include:
v Data management component
» The data management component controls, provides, and manages access to the system’s data.
v" Worker components
=  Worker components execute operations and perform work based on the data.

» Communication in data-centered systems is characterized by a one-to-one bidirectional
communication between a worker component and the data management component.

v" Worker components do not interact with each other directly; all communication goes through
the data management component.

Worker 1 ST Two Waﬁ """ -~ Worker 2
communication

Data Manager [« >
&

,' N .- Datarepository
Manages data

10/3/2012 Software Engineering Design: Theory and Practice 3



DATA-CENTERED SYSTEMS

» Because of the architecture of these systems, they must consider issues with:
v' Data integrity
v Communication protocols between worker and data management
v" Transactions and recovery (also known as roll-back)

v" Security
Worker 1 Worker2 | 1. Communication Protocol
2. secwf,tg
1. Communication Protocol
2 sSeewrty -
Data Manager (—‘—)@
1. Transactions and Recovery 7 Data ntegrity

2. Secuw',tg ___________________ -

» A common architectural pattern for data-centered systems is the Blackboard
Pattern.

10/3/2012 Software Engineering Design: Theory and Practice




BLACKBOARD ARCHITECTURAL PATTERN

» Blackboard decomposes systems into components that work around a central data
component to provide solutions to complex problems.
v These components work independently from each other to provide partial solutions to problems
using an opportunistic problem-solving approach.

v' That is, there are no predetermined, or correct, sequences of operations for reaching the
problem’s solution.

» The Blackboard architectural pattern resembles the approach a group of scientists would
employ to solve a complex problem.
v Consider a group of scientists at one location using a blackboard (chalkboard, whiteboard, or
electronic blackboard) to solve a complex problem.
v Assume that to manage the problem-solving process, a mediator controls access to the
blackboard.

v Once the mediator (or controller) assigns control to the blackboard, a scientist evaluates the
current state of the problem and if possible, advances its solution before releasing control of the
blackboard.

v" With new knowledge obtained from the previous solution attempt, control is assigned to the
next scientist who can further improve the problems’ state.

v' This process continues until no more progress can be made, at which point the blackboard
system reaches a solution.

» This behavior is prevalent in expert systems, therefore, the Blackboard architectural
pattern is a good choice for depicting the logical architecture of expert systems.

10/3/2012 Software Engineering Design: Theory and Practice 5




BLACKBOARD ARCHITECTURAL PATTERN

Agents cannot
access blackboard The actual blackboard. (n this
until access is example, this is the data repository
grated by

Cowntroller
conkroller.

Agent 3 waits for his turn

Access to the blackboard has

@ been granted to Agent 1
- SN :\

Agent 2 waits for his turn Agent 1 advances the solution!

10/3/2012 Software Engineering Design: Theory and Practice 6



BLACKBOARD ARCHITECTURAL PATTERN

» Consider the Students’ Scheduling System from Chapter 4.

. Controller

< <component = > E

ScheduleManager -
() (&) (S ;O‘
1Scheduls | IStudentHiskary I'workscheduls |ICn:-urseDFFering5
—————— Aogents
< <component = E = scompanent = > E <<component = >
StudentHistory WorkSchedule CourseDfferings <o
/J\ 3 T /j\ . /Jr\ ~~~~~
o O T e
| Ischedule | Ischedule | IScheduls BLHCRbOMVO{
<<component > = ] |«
2cheduleBlackboard

10/3/2012 Software Engineering Design: Theory and Practice




BLACKBOARD ARCHITECTURAL PATTERN

Client

Client requests a

ScheduleManager

StudentHistory Coursefferings WarkSchedule

scheduleBlackboard

schedule -

\\_") ,

Cowntroller grants schedule access |

to the StudentHistory agent-—-i._

Cowntroller grants schedule access |

to the CourseOfferings agent i

This note provides
bmportant information!

Cowntroller grants schedule access

Client recelves an
optimized schedule

R
N

>

N ' IModify
“-»|Schedue |

E 19 <<returnzz

El vach = generatéSchedule()
| .

2 1 nextScheduler) :

__________

3 wnrkOnSchedH_I_eﬂI}l

™ 4. sch:= getSchédule()V/

7 1 nextacheduler)

-

5 setScheduIe(scI‘ll)

3 ¢ workonSchedulel) o 9 sch = getSchéduIe()

________________________________

11 =<returnzs ! 10 ¢ setSchedule(seh)

[EFmmmmmmmsmmmnns Pt »
12 : nextScheduler(y . AN

13 ¢ workonSchedulel)

..................................................

17 1 sch = getSchedulel)

18 <<returnzz> !

_________________________________________________________________

i The StudentHistory agent

retrieves the data

The StudethLstorH agent
--.__ modifies the schedule and
stores the results back

The CourseOfferings agent
 retrieves, modifies, and
" stores the schedule back

14 schi= getScheEduIe()

15 ; setScheduIei;cH)

10/3/2012

Software Engineering Design: Theory and Practice




BLACKBOARD ARCHITECTURAL PATTERN

» Quality properties of the Blackboard architectural pattern include the ones
specified below.

Quality Description
R Agents are compartmentalized and independent from each other; therefore,
Modifiability | .
© | itis easv to add or remove agents to fit new systems.
Feusability Specialized components can be reused easilv in other applications.

Allows for separation of concemns and independence of the knowledge

Maintainability .. .. :
based agents; therefore, maintaining existing components becomes easier.

» An important aspect of the Blackboard and any other architectural pattern
is their deployment aspect (i.e., the deployment view). For example, It is
not easily determined from the logical view where each agent or
blackboard component reside.

v" Depending on their location, Blackboard can have increased complexity when
managing communication between agents, controller, and blackboard.

10/3/2012 Software Engineering Design: Theory and Practice




DATA FLOW SYSTEMS

» Data flow systems are decomposed around the central theme of transporting data (or data
streams) and transforming the data along the way to meet application-specific
requirements.

v’ Typical responsibilities found in components of data-flow systems include:
=  Worker components, those that perform work on data
= Transport components, those that transporting data

» Worker components abstract data transformations and processing that need to take place
before forwarding data streams in the system, e.g.,
v Encryption and decryption
v" Compression and decompression
v Changing data format, e.g. ,from binary to XML, from raw data to information, etc.
v Enhancing, modifying, storing, etc. of the data

» Transport components abstract the management and control of the data transport
mechanisms, which could include:
v' Inter-process communication
= Sockets, serial, pipes, etc.
v' Intra-process communication
= Direct function call, etc.

An example of an architectural pattern for data flow systems is the Pipes-and-Filters.

10/3/2012 Software Engineering Design: Theory and Practice 10



PIPES-AND-FILTERS ARCHITECTURAL PATTERN

» Pipes-and-Filters is composed of the following components:

v' Data source

»  Produces the data

v" Filter

= Processes, enhances, modifies, etc. the data

v Pipes

= Provide connections between data source and filter, filter to filter, and filter to data sink.

v" Data Sink
= Data consumer

Pipes used to move the data!

.. | Daka Source
Y

Filker 1

Data source produces the data

®

Not an UML diagram! .

Filters work on the data!

PipEs  ----emmmem e m
: Data is moveo and processent
Filter 2 5 ,a long t}he w/ag until it rea?l/aes
! lts destination, the Data Stnk.
Filter 3 Filter 5 Diata Sink. L"l
Filter 4 lmporta nt:

The abstractions used in the box-and-
line dingram above for Pipes can be
decelving, since they really do not
convey the real identity of these
mechanisms!

10/3/2012

Software Engineering Design: Theory and Practice

11



PIPES-AND-FILTERS ARCHITECTURAL PATTERN

» A common example for the Pipes-and-Filters pattern:
v' Architecture of a Language Processor (e.g., compiler, interpreter)

lmportant:
Not a uML Blagram!
L7

—— > Lexical Analyzer > Parser » Code Generator > Optimizer
A i N " N
¢ u / ) )
Lexical awanger 3 ) Pa YSCYP':CD ces____/ v
o ! arse trees
; . werates code, e.o., .
produces tokens \\ P 1 Qenerites codt, €.9 Optimizes coole
\ ; wmachine language
- Reused -t

"o component \‘\}‘

N

It would be cool to build
an interpreter... | know,
let’s reuse the

components that we
already have!

O

N B

O — > Lexical Analyzer > Parser > Optimizer > Interpreter
o
~ ) " " "
@ LexicaLawanger PWS&YP? uees
- arse trees Tl
produces tokens P ) Optimizes Ruwn the
interpreted form
program
of the program.

10/3/2012 Software Engineering Design: Theory and Practice 12



PIPES-AND-FILTERS ARCHITECTURAL PATTERN

Filters
mportant: A
A UML Dlagram! e
|4 v v 1y
Lexical Code L
Analyzer Parser Generator Optimizer
1 call :
0 2 : process()
A
N 3 callf)
n this example, the 1 .~ 4: process()
Pipes ave simply - .
function calls! :
; 5:call)
E & 1 process()
: nl

10/3/2012 Software Engineering Design: Theory and Practice



PIPES-AND-FILTERS ARCHITECTURAL PATTERN

» Consider software that houses algorithms for automatically determining the identity of an

individual:

v The software access videos (with audio) from You Tube

The software detects faces of individuals in the video
= Face detection is used to determine if a face is in the video

v
v" The software recognizes faces speech from the video
v

= Face recognition is used to determine the identity of the person from the detected face.
Based on detection and recognition, the software predicts the identity of individuals in the video

» Using the pipes and filters architecture, the logical structure of the system can be modeled as

follows:
lm@or’ca nt:
Cownsider what would happen
tf a better algorithm for
, , ., ’ ’ ’ ’ ’ ?
BL@ video 'FLLC'. TYDI/VLS{OYVIACD,{ data COI/L’CﬂWLLI/L@ DV\,LH recoo wition s discovereol:
. the information from detected faces!
A : Transformed data containing only
s the results from the recognition
v process, e.9., a report of tdentity!
j o | Wanted!
L 7 L7 @
Youtube Manager »  Face Detection » Face Recognition > |dentity Manager gl
Joe Developer
| Wanted! [~
10/3/2012 Software Engineering Design: Theory and Practice




PIPES-AND-FILTERS ARCHITECTURAL PATTERN

> In the previous example, the box-and-line diagram was useful for visualizing
the components in the system, however, it conveyed nothing about how data is
transported from one Filter to the next, 1.e., the Pipes.

v" Consider the following UML component for the same system

This component may reuse existing
mechanisms to facilitate data movement,
- forexample, the NET Filesystemwatcher.

n this system, data is moved through
, , , <<component>> E
the File System using a mechanism FileSystemManager

that relies on monitoring of new files!

< . This interface encapsulates
the Filesystemwatcher and
provides other services for

Q @) J creating, deleting, reading
IFileSystemPipe IFiIeSr?IjemPipe IFiIeSyTemPipe IFileSystemPipe and writing files.
<<component>> E <<component>> E <<component>> E <<component>> E
VideoManager FaceDetection FaceRecognition IdentityManager
n A A
arning: N , o , , ,
w These components require monitoring of dirvectories from the File

This is not the typical example that you
would find for Pipes-and-Filters. However,
it displays the inherent flexibility present
whewn employing architectural patterns.

System Manager. When a new file is detected, the File System
Mawnger fires an event, tndicating that a new file has been
received, which triggers some processing by the Filter components.

10/3/2012 Software Engineering Design: Theory and Practice 15



A wore detailed example of the
message exchanges in the example

: VideoManager : FaceDetection . : FaceRecognition : IdentityManager : FileSystemManager
, , , : : : 1:register() :
Reglster with the file system manager t----..___ : : : -
E I 2:re is er H
. getoerd .
A T ; This trigoers
Youtube video file founal! ! : | 3:register) Anal \/ggtl
.y ' ' : - Wi wt!
Transport the file to the next - : : : " eve
component via the file system. : : : L
P ft J S 4: put(file) | ! ! - )
: : : Ve
LF 5 nnFiIEDetecteéll:ﬁIE} E _:(
E & : process() . . .
> 7+ put{fieh ; -~ Notu{g anyone

Do work ustng the data from -
the file, save the results on the
file system so that the process

’D' registered for
8 : onFileDetected(file) : monitoring of
this directory

9 ; process() .

can repeat again with the next D | 10: put{file)
component / filter. !
E 511 : DI‘IFi|EDEtEIItEI:|I:ﬁ|E}II
E I 12 : process() : i
: ! o lolewtz,tg
: v oetermined!

10/3/2012 Software Engineering Design: Theory and Practice 16




Assume now that unlike the , , ,
Srevious example, the Video Consider the Pipes-ana-Filters

component now tinterfaces with a ool 8[«60{ this wa U
camera for real-time video feed! ~

<<component>> 2] < <components = =] Other Pipes
VideoManager FaceDetection | and Filters in
> @ the System
¥ -~/
A (' IVideoPipe . ’
Filter Component ----- \
Pipe Interface---- T Filter Component

when modeled this way, there are
’meLLcatiows about the tnternal
structure of these components!

"> For example, see below

___________________________________________________________________________________________________________________________________________________________________________________________________

K
Stmilarly, since Pipes-and-Filters specify the separation between
pipes anal filters, theve is an bmplication about the existence of Provided interface to transport the
both pipe and Filter component inside the video Manager data stream to the next component
<<component>> g
: FaceDetection
. <<component>> / -
.| VideoManager E N <<delegate>> <<component>> E <delegate>> L4
4 @), [J<— )| TransportComponent —Og[]—o
IVideoPipe E | IStreamPipe IStreamPipe
: O
Pipe 7 |
<<component>> .
WorkerComponent 2] |«
- Filter

10/3/2012 Software Engineering Design: Theory and Practice 17




PIPES-AND-FILTERS ARCHITECTURAL PATTERN

» Quality properties of the Pipes-and-Filters architectural pattern include the
ones specified below.

Quality Description
Extensibility | Processing filters can be added easily for more capabilities.
. Bv connecting filters in parallel, concurrency can be achieved to reduce
Efficiency X : !
- latency in the system.
o Bv compartmentalizing pipes and filters, thev can both be reused as-is in
Feusability o p & PP T
- other systems.
. oy Filters are compartmentalized and independent from each other; therefore,
Modifiability | . .
© | itis easv to add or remove filters to enhance the svstem.
. At anv point during data-flow, security components can be injected to the
Security - . : - . :
i work-flow to provide different tvpes of securitv mechanisms to the data.
C e e Allows for separation of concemns and independence of the Filters and
Maintainabilitv | 7. .. . .
| Pipes; therefore, maintaining existing components becomes easier.

10/3/2012 Software Engineering Design: Theory and Practice




DISTRIBUTED SYSTEMS

» Distributed systems are decomposed into multiple processes that (typically) collaborate
through the network.
v' These systems are ubiquitous in today’s modern systems thanks to wireless, mobile, and
internet technology.

» In some distributed systems, one or more distributed processes perform work on behalf of client
users and provide a bridge to some server computer, typically located remotely and performing
work delegated to it by the client part of the system.

= Other distributed systems may be composed of peer nodes, each with similar capabilities and
collaborating together to provide enhanced services, such as music-sharing distributed
applications.

v' These types of distributed systems are easy to spot, since their deployment architecture entails
multiple physical nodes.

v" However, with the advent of multi-core processors, distributed architectures are also relevant to
software that executes on a single node with multiprocessor capability.

» Some examples of distributed systems include:
v' Internet systems, web services, file- or music-sharing systems, high-performance systems, etc.

» Common architectural patterns for distributed systems include:
v" Client-Server Pattern
v’ Broker Pattern

10/3/2012 Software Engineering Design: Theory and Practice 19




10/3/2012

CLIENT-SERVER PATTERN

Clienk

Box-and-Line Diagram

PC Mode

<<artifack = D
pc_browser.exe

MMobile Phone Node

<eartifact = D
mp_browser.exe

<<Request x>
Server
<<Response ==
ML Deplayment Diagram
=<HTTP==
Server Node
E < <artifack == D
' | pc_browser.exe
<<HTTP = 4 4
< <artifack ==
_____________________ = web_server.exe

Software Engineering Design.: Theory and Practice




» Quality properties of the Blackboard architectural pattern include the ones

CLIENT-SERVER PATTERN

specified below.
Quaklity Description
" Allows clients on different platforms to interoperate with servers of
[nteroperabilitv | .
different platforms.
Modifiability Allows fc:r centralized changes in the server and quick distribution among
manyv clients.
I By separating server data, multiple server nodes can be connected as
Availability . L Y
’ backup to increase the server data or services™ availability.
. Bv separating server from clients, services or data provided bv the server
Feusability o ..
’ can be reused in different applications.
10/3/2012 Software Engineering Design: Theory and Practice

21




WHAT’S NEXT...

» In this session, we presented fundamentals concepts of data-centered , data
flow, and distributed systems, together with essential architectural patterns
for these systems, including:

v" Blackboard
v" Pipes-and-Filters
v" Client-server

» In the next session, we will continue the discussion of distributed systems
and present in depth two other types of systems (i.e., Interactive and
Hierarchical) together with architectural patterns, including:

v Model-View-Controller
v' Layered

v Main program and subroutine

10/3/2012 Software Engineering Design: Theory and Practice 22




