CHAPTER 6: CREATIONAL DESIGN PATTERNS

SESSION I: OVERVIEW OF DESIGN PATTERNS,
ABSTRACT FACTORY

Software Engineering Design: Theory and Practice
by Carlos E. Otero

Software
Engineering
Design

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/29/2012

Software Engineering Design.: Theory and Practice

SESSION’S AGENDA

» Patterns in Detailed Design
v' Again, Architectural vs. Design Patterns.

» Classification of Design Patterns
v" Purpose
v" Scope

» Documenting Design Patterns
» Creational Design Patterns

v' Abstract Factory
v Computer Store Example

> What’s next...

10/29/2012 Software Engineering Design: Theory and Practice

PATTERNS IN DETAILED DESIGN

» In the previous sessions, the concept of patterns was introduced with an
emphasis on software architecture.

v During detailed design, a wide variety of design patterns exist for providing
solutions to recurring problems; these are documented by the GoF.

» Remember, in 1994, Gamma, Helm, Johnson, and Vlissides—better known as
the Gang of Four (GoF)—published their influential work that focused on a
finer-grained set of object-oriented detailed design solutions that could be used
in different problems “a million times over, without ever doing it the same way
twice.”

v" Influenced by Alexander’s work on architectural patterns, they called these Design
Patterns.

v" Their work resulted in the creation of a catalogue of 23 (detailed design) patterns.
v" Each pattern was described in detail, using a specific pattern specification format.

» Design patterns are recurring solutions to object-oriented design problems in a
particular context.

v' They are different than architectural patterns!

10/29/2012 Software Engineering Design: Theory and Practice

PATTERNS IN DETAILED DESIGN

» Architectural vs. Design Patterns

v" Architectural patterns take place during the architecture activity of the software
design phase; therefore, they serve best to identify the major components and
interfaces of the system.

= Design Patterns take place during detailed design; therefore, the serve best to
identify the inner structure of components identified during the architecture activity.

v' Architectural patterns are too abstract to be translated directly to working code.
Although they provide the general structure of the system, they do not fill the
gaps required to create working code directly from the model.

= Design Patterns provided the details necessary for creating working code.

v" Architectural patterns have a direct effect on the architecture of software and
are associated with specific system types (e.g., interactive systems)
= Design Patterns have no direct effect on the architecture of systems and are

independent of the type of systems. That is, a specific design pattern, e.g., the
observer, can be used within every component specified by all architectural patterns.

10/29/2012 Software Engineering Design: Theory and Practice 4

CLASSIFICATION OF DESIGN PATTERNS

» Design patterns can be classified based on:
v Purpose
v Scope

» The purpose of a design pattern identifies the essence of the pattern; therefore, it serves
as fundamental differentiation criterion between design patterns. The three types of
purposes used for classification are:

v" Creational

= Patterns that deal with creation of objects.
v' Structural

= Patterns that deal with creation of structures form existing ones.
v Behavioral

= Patterns that deal with how classes interact, the variation of behavior, and the assignment of
responsibility between objects.

» The scope criterion captures whether a design pattern primarily applies to classes (during
design time) or objects (during run-time).
v Although we will use the scope criterion when discussing specific design patterns, scope is not

used much in practice. The dominant criterion for classifying (and talking about) pattern is the
purpose criterion (i.e., creational, structural, and behavioral).

10/29/2012 Software Engineering Design: Theory and Practice 5

DOCUMENTING DESIGN PATTERNS

Categorv

Description

Note:

The GoF Ldentified 13 categories for
documenting design patterns. Together,
these categories provide detailed
information of existing oesign patterns
and provide direction for documenting
future patterns.

lVI/L_"QOYtﬂ nt:

n this course, we've not concerned with
presenting this extensive documentation
for each pattern, so Yyou won't see this in
future presentations of design patterns!

Name and Classification

Intent

Also Known As

Motivation

Applicability

Structure

Participants

Collaborations

Consequences

Implementation

Sample Code

Known Uses

Related Pattemns

The unique pattern name that reflects the essence of the pattems
and its classification.

Describes the purpose of the pattern in such way that it is clear
what tvpes of design problems the pattemn solves, what the
pattem does, its rationale and intent.

A list of alternate well-known names for the pattemn.

En example scenario that serves as motivation for the application
of the pattemn.

Describes the situations, or design problems, that lend
themselves for the application of the design pattemn. Provides
examples of poor designs that can benefit from the pattern and
ways for identifving these situations.

Provides a structural {eg., UML class diagram) view of the
design pattem.

List the classes and objects required in the design pattermn and
their responsibilities.

Provides information about how the participants work together
to carry out their responsibilities.

Describes the effects of the design pattern, good or bad, on the
software solution.

Provides information and techniques for successfully
implementing the design pattem.

Provides sample code that demonstrates how to implement the
design pattem in different programming languages.

Provides examples of real systems that emplov the design
pattem.

Provides information about other design pattemns that are related,
or that can be used in combination with the design pattem.

10/29/2012

Software Engineering Design: Theory and Practice

CREATIONAL DESIGN PATTERNS

» Creational design patterns abstract and control the way objects are created
in software applications.

v" They do so by specifying a common creational interface.

» By controlling the creational process with a common interface, enforcing
creational policies become easier, therefore giving systems the ability to
create objects that share a common interface but vary widely in structure
and behavior.

» Examples of creational patterns include:
v" The Abstract Factory
v" The Factory Method
v" The Builder
v" The Prototype
v" The Singleton

10/29/2012 Software Engineering Design: Theory and Practice

THE ABSTRACT FACTORY

» The Abstract Factory is an object-creational design pattern intended to
manage and encapsulate the creation of a set of objects that conceptually
belong together and that represent a specific family of products.

» According to the GoF [1], the intent of the Abstract Factory is to

v' Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

» Like all creational patterns, Abstract Factory is composed of creator classes
and product classes.

v" As it will be seen, some creational patterns fuse the creator and product into
one class.

v' At first, the Abstract Factory may seem confusing because of the number of
classes required, however, when you take a closer look at the pattern, you’ll see
that the structural relationships required are modeled over and over the same
way as new products are added to the design.

10/29/2012 Software Engineering Design: Theory and Practice 8

THE ABSTRACT FACTORY DESIGN PATTERN

Clients ongj kRinow about creator and product
interfaces! This allows us to vary behavior
without changing client coole!

Factories need to obeg th
Factory tnterface!

Creator
Classes

—

Client ;
. k’
<<interface s> 1/
AbstractFactory < zinterfare== < <interface ==
AbstractProductA AbstractProducts
ForeatefrogetA(?
FeraataProguctE} & & & &
E ConcreteFactoryl ConcreteProductal ConcreteProductBl E E
1| +oreateProductal) i b
v | +ereakeProductE())T\ v
ConcreteFactory2 ConcreteProductA? | | ConcreteProductB2
+createProductal)
+createProductB) A)1\

Lmportant: Notice the Pattern!
Adding other products for existing families
requires adding another AbstractProduct

interface and concrete product classes!

Products need to obegj the

J—

- Product lnterface!

L Product
Classes

Lmportant: Notice the Pattern!

Adding a new family of products requires
adding another Factory, AbstractProduct
interface and concrete product classes!

10/29/2012

Software Engineering Design: Theory and Practice

THE ABSTRACT FACTORY DESIGN PATTERN

lvvtpor’ca nt:
Adding a new

family of products!

Client
<inkerface > 1/
AbstractFactory < <interfare == <<interface>=>
[> AhstractProductA| | AbstractProducts <] —————
/ ForeateFrodcdd|? '
ForaateProductsy) & & & & &
E ConcreteFactoryl | | | ConcreteProductAl ConcreteProductBl E E
v | +ereateProductal) | | 7 b
v | +ereakeProductE() ‘)T\ v
ConcreteFactory2 | | ConcreteProductd? | | ConcreteProductB2
+createProductal) :
+createProductB) . A)1\
ConcreteFactorv3 ConcreteProductA3 ConcreteProductB3
A New Family of Products y

+createProductB()

has been added! Tl +createProductA() i\ /]\

10/29/2012 Software Engineering Design: Theory and Practice

THE ABSTRACT FACTORY DESIGN PATTERN

A New Product has been

(mportant: Adeol £ {cH Liecl
, istin milies!
Adding a new added to existing fa lies
product to existing
famdily of products! 0 Client }
< <interface == 1/ . A:'/
AbstractFactory < zinkerface == zzinterface x> <<interface>>
[> AbstractProductA| | AbstractProductl <] """ AbstractProductC
ForeateFroguctAf)
P ;Lffeaumduch(} \
NN A AN | AVAWA
+createProductC()----7 1& & : o ; i SO T
f' E ConcreteFactoryl | | | ConcreteProductAl ConcreteProductB1 E E i ConcreteProductC1
| +ereateProducta) | 7 D
i 7-L_;-n:reatePrn:-ductE{]| i)T\ L ' 4\ SRR - ;
+createProductC() -4 = ': : frizzizid \ i
ConcreteFactory2 | ConcreteProducta? | | ConcreteProductB2 ; ConcreteProductC2 :
Ii ' +rreateProduckal) 'I 5 :
___;—u:reateF‘ru:uductB{]l !)1\ : /F ,"’
' ConcreteProductA3 ConcreteProductB3 ConcreteProductC3
ConcreteFactory3
+createProductA() i\
+createProductB() /]\ /]\
+createProductC()

10/29/2012 Software Engineering Design: Theory and Practice 11

THE ABSTRACT FACTORY
— VERY SIMPLE AND FICTIONAL EXAMPLE —

» Consider a software system for a computer store, where the store carries only two types
of computers for sale:

v Top of the line computer, we’ll call these advanced computers
v Inexpensive computers, we’ll call these standard computers
v Obviously, a computer store will need to carry more computers in the future!

» Advanced computers are made up of “advanced computer products,” e.g. the latest
multi-core CPU, wireless keyboard, advanced monitor (e.g., widescreen large 3D),
advanced graphics & sound card, etc.

v" For simplicity, we’ll only use CPU, keyboard, and Monitor for our example.

» Standard computers are made up of “standard computer products,” e.g., single core CPU,

wired keyboard, small screen monitor, low-grade graphics and sound, etc.
v" For simplicity, we’ll only use CPU, keyboard, and Monitor for our example.

» The system is designed so that it searches remote information sources, e.g. online
websites, remote databases, etc. for product information, such as:

v" Product reviews
v Customer’s comments from specific websites, e.g., Amazon.com

v" Manufacturers’ comments
v

10/29/2012 Software Engineering Design: Theory and Practice

12

THE ABSTRACT FACTORY
— VERY SIMPLE AND FICTIONAL EXAMPLE —

ome to the computer stope?
ion to request product information:

cd GComputer

Eﬂcl/l GOVM,‘Pl,LteY f,s made M‘P '3 andard Comnputer
0{ d/l,‘ﬁfelfel/\,t 'PYOd[,LGtS e Enter optiom: 1
\\\\ Information
/ ; Information Source
‘ Source

Information
Source
Information
Source

Customer -

Information
Source

Computer Store

Information
Source

Information
Source

Each computer product s assoctated with one or
more information sources. These sources are ------
used to fina out information about the product!

10/29/2012 Software Engineering Design: Theory and Practice 13

ABSTRACT FACTORY FOR COMPUTER STORE

Computer
r W
< <interface=> J —
ComputerPartsfactory einterface == | | <<interface==| | <<interface==
P Monifor feyboard
+oreatatfaniton Mondor
ForeateSPLY N SR

+oraafafapboardll: fepboara™ ZS ZS ZS & ZB
A - R T

Product

—

Classes

Creator AdvancedComputerPartsFactory | | AdvancedCPU | | Advanced™onitor | | AdvancedKeyboard

Classes

+createfonitor(): Monitor*
+createCPU: CPU* 4’1'"
+createkeyboard(); Kevboard®

StandardC terPartsFact ’ *)
andarcdtomputerrartsractory StandardCPU | | Standard™Monitor | | StandardKeyboard

+createMaonitor(): Monitor*

+createCPUC): CPUF T. —

+createkevboard(): Kevboard®

Let’s break it down L the next slides...

10/29/2012 Software Engineering Design.: Theory and Practice

<<interface>>
Cpu

+Cpu(void)
+~Cpu(void)

+dlisplay Cpulnformation(void): void
-

Notice the italics to denote |

the abstract wmethoo -~

<<interface>>
Monitor

+Monitor(void)
+~Monitor(void)
+displayMonitorinformation(void): void

<<interface>>
Keyboard

+Keyboard(void)
+~Keyboard(void)

+displayKeyboardInformation(void): void|

class Cpu

{

public:
/{ Constructor. .
7/ Constructo Notice how we create
Cpu(wvoid); ; 3

interfaces inC++ -

/{ Destructor. \\
virtual ~Cpu(wvoid); J
// Interface method for retriewving the CPyla\infC'waticn. !
virtual void displayCpuInformation({void)/= @; L
/f ... other methods for the Cpu class.

b

class Monitor

{

public:
" FE“E'“F;;" This means that you cannot instantiate
Monitor(void); , ,

' objects from this abstract class

// Destructor. .
virtual ~Monitor(void}); A
// Interface method for retrieving the monitor!s information. (
virtual void displayMonitorInformation(woid)/= B;y(e
/{ ... other methods for the Monitor class.)

b

class Keyboard

1

publi_c_=c . Derived classes must provide implementation for
// Constructor. , , ,
Keyboard(void); this method be{oye tl/leg cawn be tnstantiated!
// Destructor. N
virtual ~Keyboard(wvoid); /)
// Interface method for retrieving the keyboards's information. !
virtual void displayKeyboardInformation(veid)/= @;\
ff ... other methods for the Keyboard class. -

I

10/29/2012 Software Engineering Design: Theory and Practice

THE CPU PRODUCT DESIGN

class Cpu

{ -

public: RREEE aeemT
// Constructor.
Cpu(wvoid);

// Destructor.

virtual ~Cpu(woid);

// Interface method for retrieving the CPU's information.
virtual wvoid displayCpuInformation(wvoid) = 8;

// Constructor.
AdvancedCpu(wvoid);

[/ Destructor.
virtual ~AdvancedCpu(woid);

// Interface method for retrieving the CPU's information.
virtual veoid displayCpuInformation{wvoid);

// ... other methods for the Cpu class.

/f ... other methods for the Cpu class.
b
#include "cpu.h” /,/’/‘
=
class AdvancedCpu : public Cpu
1
public:

<<interface>>

Cpu
+Cpu(void)
+~Cpu(void)
+display Cpulnformation(void): void
AdvancedCpu StandardCpu

+displayCpulnformation(void): void +display Cpulnformation(void): void

#include "cpu.h"

class StandardCpu : public Cpu <7~
1
public:
// Constructor.
standardCpu(veid);
// Destructor.
virtual ~StandardCpu(void);
// Interface method for retriewing the CPU's information.
virtual veoid displayCpuInformation(wvoid);
/f ... other methods for the standard Cpu class.
b

10/29/2012

Software Engineering Design: Theory and Practice 16

THE MONITOR PRODUCT DESIGN

class Monitor

<<interface>>

1 <. Monitor
public: e e
// Constructor. e 777> | +Monitor(void)
Monitor(void); +~Monitor(void)
+displayMonitorinformation(void): void
// Destructoer.
virtual ~Monitor(wvoid); A A
// Interface method for retrieving the monitor's information. i E
virtual veid displayMonitorInformation(veid) = @; . .
AdvancedMonitor StandardMonitor

// ... other methods for the Monitor class.
bi +displayMonitorInformation(void): void +displayMonitorInformation(void): void
=4
A
#include "Monitor.h" /,/’/ ' #include "monitor.h™ ’___,,»'/
& i <«
class AdvancedMonitor :public Monitor i class StandardMonitor public Menitor
1 P
publ;g: E public:
J/ Constructor. ! .
. . 1 i Constructor.
AdvancedMonitor(void); ! . \
' standardMonitor(void);
/f Destructor. E .y
~AdvancedMonitor (void); : /f Destructor.
: ~StandardMonitor(veid);
// Interface method for retrieving the monitor's information. !
virtual void displayMonitorInformation(veid); : // Interface method for retrieving the monitor's information.
E virtual veoid displayMonitorInformation(woid);
other advanced monitor methods. : };

10/29/2012

Software Engineering Design: Theory and Practice

17

THE KEYBOARD PRODUCT DESIGN

Hopefully by this point You can start seeing

1 Keyboard 2
{C(ass Keyboar the pattern for designing products! <<interface>>
public: A\ Keyboard
// Constructor. \\~\\ :
Keyboard(void); el e . +Keyboard(void)
Tty | +~Keyboard(void)
// Destructor. e +displayKeyboardInformation(void): void|
virtual ~Keyboard({void); A A
// Interface method for retrieving the keyboards's information. :
virtual void displayKeyboardInformation(void) = @; * *
AdvancedKeyboard StandardKeyboard
I . other methods for the Keyboard class.
i +displayKeyboardInformation(void): void +displayKeyboardInformation(void): void
>4
’ A
#include "keyboard.h™ e #include "keyboard.h” 4——”’””

class AdvancedKeyboard :
1
public:
// Constructor.
AdvancedKeyboard (void);

public Keyboard

/f Destructor.
virtual ~AdvancedKeyboard(void);

/f Interface method for retrieving the keyboards's information.

virtual void displayKeyboardInformation(woid);

.'l. -'I. - =

. other methods for the Keyboard class.

class StandardKeyboard : public Keyboard

1
public:
[/ Constructor.
standardkeyboard({wvoid);
virtual ~5tandardkeyboard(veid);
[/ Interface method for retrieving the keyboards'
virtual void displayKeyboardInformation(woid});
i . other methods for the Keyboard class.
ks

;
i
;
i
:
i
i
:
i
:
i
i
:
i
;
i
:
i
i
:
i
:
i
i
:
i
;
:
B -
1 [/ Destructor.
:
i
i
:
i
;
i
:
i
i
:
i
:
i
i
:
i
;
i
:
i
i
:
i
:
i
i
:
i
;
i

s information.

10/29/2012

Software Engineering Design: Theory and Practice

18

THE CPU PRODUCT IMPLEMENTATION

o
A

#include "AdvancedCpu.h”
#include <iostream:>

using std::cout;

// Constructor.

AdvancedCpu: :AdvancedCpu (void)
1

}

// Intentionally left blank.

// Destructor.

AdvancedCpu: :~AdvancedCpu(wvoid) The 000{6 tn this fMV\/GtLOV\z RVLOWS

how to retrieve information from
data source A, which can use
specific format, Location, etc.

// Intenticnally left blank.
hy

// Interface method for retrieving the cpu's information.
void AdvancedCpu::displayCpuInformation(void)

T S
// Since this is an example, we will assume that the advanced CPU's information ~-~7777
// will be retrieved from information source A, e.g., database A, file A, etc.
// This may require a particular database connection, file access, etc.
cout<<"\nInformation retreived from source A.\nDisplaying the advanced cpu's information.\n\n";
}

#include "StandardCpu.h”
#include <iostream:

using std::cout;

// Constructor.
StandardCpu: :StandardCpu(void)

// Intenticonally left blank.
¥

// Destructor.

StandardCpu: :~StandardCpu(void) The code Ln this fMV\/Gt/LOV\z kenows

how to retrieve information from
data source B, which can use
specific format, location, ete. ./

// Intenticonally left blank.
¥

// Interface method for retrieving the cpu's information.
vold StandardCpu::displayCpuInformation(wvoid)

1

/f Since this is an example, we will assume that the standard CPU's information
// will be retrieved from information source B, e.g., database B, file B, etc.
//f This may require a particular database connection, file access, etc.
cout<<"\nInformation retreived from source B.\nDisplaying the standard cpu's information.\n\n";

B

nformation Source A

Database for

Advanced Products

File with
Information of
Advanced
Products

nformation Source B

Database for
Standard Products

I

File with
Information of
Standard

Products

10/29/2012

Software Engineering Design: Theory and Practice

19

OTHER PRODUCT IMPLEMENTATION

// Interface-methad for retrieving the cpu's information.
> v01d<advancedKeyhoard :displayKeyboardInformation(void)

ALL otherproducts arve ;
bmplemented using the

> vnldtstandardKeyhoard' displaykeyboardInformation(void)

// will be retrieved from information source A, e.g., database A, Tile A, etc
\nDisplaying the advanced keyboard's information.inin";

// This may require a particular database connection, file access, etc

// Since this is an example, we will assume that the advanced keyboard's information
¥
. '

. .
nInformation retreived from source

"
h

cout<<

f/ Interface method for retrieving the cpu's information.
file B, etc.

1

[/ Since this is an example, we will assume that the advanced keyboard's information

// will be retrieved from information source B, e.g., database B,

J// This may require a particular database connection, file access, etc.
"“nInformation retreived from source B.\nDisplaying the standard keyboard's information.inin";

cout<<

{/ Interface-methed for retrieving the moniter's informatien.
> vald&AdvancedM0n1tor, displayMonitorInformation(woid)

/f Since this is an example, we will assume that the advanced monitor's information

wnDisplaying the advanced monitor's information.‘n\n™;

// will be retrieved from information source A, e.g., database A, file A, etc
H.

// This may require a particular database connection, file access, etc

. .
nInformation retreived from source

wy
!

cout<<

displayMonitorInformation()
, Tile B, etc.

// Interface wethod for retrieving the monitor's information.
// Since this is an example, we will assume that the standard monitor's information

same ‘Pﬂttﬁh/\,!

\‘—“.> v01d<5tandardM0n1ton
(e
// will be retrieved from information source B, e.g., database B
/f This may require a particular database connection, file access, etc
cout<<"\nInformation retreived from source B.\nDisplaying the standard monitor's information.’nin";
b

Software Engineering Design: Theory and Practice

10/29/2012

20

DESIGN THE FACTORY INTERFACE AND CONCRETE FACTORIES

<<interface>>
ComputerPartsFactory

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

+displayMonitorInformation(void): void A A

S~ | |

AdvancedComputerPartsFactory

AdvancedMonitor StandardMonitor

+displayMonitorInformation(void): void

StandardComputerPartsFactory

AdvancedCpu

StandardCpu

+displayCpulnformation(void): void

o

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

+display Cpulnformation(void): void

AdvancedKeyboard

+displayKeyboardInformation(void): void

A

StandardKeyboard

+displayKeyboardInformation(void): void

lVl/L_’DOYtlZ nt:

This design connects the products
designed in the previous slides with the
factories used to abstract their creation!

10/29/2012

Software Engineering Design: Theory and Practice

21

THE ADVANCED COMPUTER PARTS FACTORY

#include "AdvancedComputerPartsFactory.h”
#include "AdvancedMonitor.h”
#include "AdvancedCpu.h”

"

#include "AdvancedKeyboard.h”

<-

AdvancedComputerPartsFactory: tAdvancedComputerPartsFactory(void)

i
¥

// Intentionally left blank.

AdvancedComputerPartsFactory: i~AdvancedComputerPartsFactory (void)

1
¥

// Intenticnally left blank.

//{ Create and return an advanced monitor.

Monitor* AdvancedComputerPartsFactory::createMonitor()

1
// This example assumes that client callers will deallocate memory.
return new AdvancedMonitor;

}

// Create and return an advanced keyboard.

Keyboard* AdvancedComputerPartsFactory::createkeyboard()

1
// This example assumes that client callers will deallocate memory.
return new AdvancedkKeyboard;

¥

// Create and return an advanced cpu.
Cpu* AdvancedComputerPartsFactory::icreateCpu()

{

// This example assumes that client callers will deallocate memory.
return new AdvancedCpu;

N TS LETTLFLLY | L

AdvancedMonitor

+oreateCpuivoid):

Y +oreatekeyboardy

+displayMonitorInformation{void): void

AdvancedCpu

‘_\ !

AdvancedComputerPartsFactory

+displayCpulnformation{void): void

+reateMonitor (void): Monitor™
+createCpulvoid): Cpu™
+rreatekeyboard(void): Keyboard™®

o

AdvancedKeyboard

+displaykeyboardInformation(vaid): void

10/29/2012

Software Engineering Design: Theory and Practice

22

THE STANDARD COMPUTER PARTS FACTORY

#include “StandardComputerPartsFactory.h”

#include “standardMonitor.h”

#include "StandardKeybeard.h™ These are 60[!Ai\/01L6VL’C!
#include "StandardCpu.h”

/{ Constructor.
StandardComputerPartsFactory::5StandardComputerPartsFactory(void)

1
¥

// Intentionally left blank.

/{ Destructor.

StandardComputerPartsFactory: i~StandardComputerPartsFactory (void)

i
¥

// Intentionally left blank.

// Create and return the standard monitor object.

Menitor® StandardComputerPartsFactory::createMonitor(wvoid)

1
// This example assumes that client callers will deallocate memory.
return new StandardMonitor;

¥

// Create and return the standard keyboard object.

Keyboard® StandardComputerPartsFactory::createleyboard(veid)

1
// This example assumes that client callers will deallocate memory.
return new StandardkKeyboard;

¥

// Create and return the standard CPU object.
Cpu*® StandardComputerPartsFactory::createCpu(void)

{

// This example assumes that client callers will deallocate memory.
return new StandardCpu;

il Manitor ™
®

i)z Keyboard™

\ | +displayManitorInformation(void): void

StandardMonitor

w‘r/

StandardComputerPartsFactory

StandardCpu

+oreateCpulvoid): Cpu™®

+createMonitor (vaid): Monitor=

+createkeyboard(void): Keyboard®

+displayCpulnformation{vaoid): void

™

StandardKeyboard

+displayKeyboardInformation{void): vaid

10/29/2012

Software Engineering Design: Theory and Practice

23

class ComputerPartsFactory;
class Monitor;

THE CLIENT COMPUTER DESIGN

These are equivalent!

class Cpu;
class Keyboard;

class Computer

1
public:

// Constructor parameterized with a computer parts factory.
Computer({ComputerPartsFactory® computerPartsFactory);

/f Destructor.

<<interface>>
| ComputerPartsFactory

. +createMonitor(void): Monitor*
N +createCpu(vord): Cpu*
\ +createKeyboard(void): Keyboard*|

virtual ~Computer(void);

Computer <<interface>>

// Display detailed information

about
vold displayMonitorInfo(veid);

the monitor.

+Computer(computerPartsFactory: ComputerPartsFactory*)
+display MonitorInfo(void): void

Cpu

- cpu +Cpu(void)
+display Cpulnfo(void): void - +~Cpu(void)
+displayKeyboardInfo(void): void +display Cpulnformation(void): vord
/f Display detailed information about the CPU.
vold displayCpuInfo(veid); -_keyboard -
) <<interface>>
/! Display detailed information about the keyboard. ~—fonitor Keyboard
vold displayKeyboardInfo(wvoid); +Keyboard(void)
'y <<interface>> +~Keyboard(void)
/! All other computer methods. Monitor +displayKeyboardInformation(void): void|
// Destructor needs to clean up memory
+Monitor(void) Y
: . +~Monitor(void)
private: 3 p p ; ;
. +diisplayMonitorinfc ti o ~
Monitor* _monitor; // Pointer to the monitor interface. displey Montorinformation(vol): voi] .
Cpu®* _cpu; // Pointer to the Cpu interface.
kKeyboard* _keyboard; // Pointer to the Keyboard interface.
g 1S p ;s p
4 del Notice the named associations, which
c m m ! i . . ; P
P e fro oae T - ave specified with private visibility!
10/29/2012

Software Engineering Design: Theory and Practice

THE CLIENT COMPUTER DESIGN

#include “"Computer.h” f You want and advanced computer, pass tin
#include "ComputerPartsFactory.h” ol o t t th .
£include "Monitor.h" lawA vanceadComputerFac ory, otherwlise,
#include "Keyboard.h" JS— -~ pass n a StandardComputerFactory
The Computer object is #include “Cpu.h S
COW‘FL@MY@O[with a FﬂGtOYg Computer: :Computer{ComputerPartsFactory* computerPartsFactory) : _monitor(®), _keyboard(@), _cpu(®)
object. The Computer object {

, // This example assumes a valid pointer is passed in.
delegates creation of -
products to its Factory!

// Retrieve the monitor object. This depends on the factory passed in.
_monitor = computerPartsFactory->createMonitor();

// Retrieve the keyboard object. This depends on the factory passed in.
\ _keyboard = computerPartsFactory->createkeyboard();

// Retrieve the cpu object. This depends on the factory passed in.
_cpu = computerPartsFactory->createCpu();

. . R . <<interface>>

void Computer::displayMonitorInfo(void) ComputerPartsFactory
{ - +createMonitor(void): Monitor*

// Use the interface method to display the monitor information. +#createCpu(void): Cou*

L +createKeyboard(void): Keyboard*|

// Note that at this point, we don't know what actual concrete object

// will be providing this service.

_monitor->displayMonitorInformation(); Computer <<interface>>
} Cpu

+Computer(computerPartsFactory: ComputerPartsFactory*)
+displayMonitorInfo(void): void +Cpu(void)

. . . +displayCpulnfo(void): void +~Cpu(void)

void Computer::displayKeyboardInfo(void) +displayKeyboardInfo(void): void +dlsplay Cpulnformation(void): void|

Since our desigwn relies on {
LVLtCY‘fﬂGCS OVLLg, this code // Use the interface method to display the keyboard information. M <interfacess
-_monitor

-_cpu

— // Note that at this point, we don't know what actual concrete object Keyboard
works ‘fOY both standard // will be providing this service. reyboatear)
j i i ~Keyboard(void
and advawnced GOWL'PMtCYS! _keyboard-rdisplayKeyboardInformation(); <<interface>> :disp/yay/?eryb(;?rd)lnfarmat;‘on(va/d): void
} +Monitor(void)
+~Monrcor(vqid))) .
void Computer::displayCpuInfo(veid) +displayMonitorinformation(void): void
1

// Use the interface method to display the CPU information.

// Note that at this point, we don't know what actual concrete object
// will be providing this service.

_cpu->displayCpuInformation();

10/29/2012 Software Engineering Design: Theory and Practice 25

ABSTRACT FACTORY EXAMPLE — PUTTING IT ALL TOGETHER

int main(int argc, char* argv[])

d

Create the advanced computer parts factory.
AdvancedComputerPartsFactory advancedFactory;

Create the standard computer parts factory.
StandardComputerPartsFactory standardFactory;

'/ The pointer to the computer ocbject.
Computer® pComputer = @;

int option = 1; <77

cout<<"Welcome to the computer store!lin

while{ opticn != @)

cout<<"Select option to request product information:in"
<<" (@) Exithn"
<<"(1) Advanced Computerin” /
<<"(2) Standard Computerinin” '
<<"Enter option: "“; \
cinrroption; i
10/29/2012

5 if(option == 1) / ..

e lcome to the computer storet

Select option to reguest product information:
(A> Exit

1> Advanced Computer

(2> Standard Computer

Enter option: 1

Information retreived from source A.
Dizplaving the advanced monitor”

o

s information.

Information retreived from source A.

Dizplaving the advanced keyhoard’s information.

Information retreived from source A.
Displaying the advanced cpu's information.

Select option to request product information:
(@>» Exit

(1> Advanced Computer
2> Standard Computer

\\
Enter option:

pComputer = new Cnmputer(&advancedFactDryj;‘/
else if{ option == 2) TN
pComputer = new Computer(&standardFactory); =7 N

Motice that regardless of the type of computer, we

can obtain information wia its well-defined interfaces!
pComputer->displayMonitorInfol); L
pComputer->displaykeyboardInfol); e
pComputer->displayCpulnfol);

\
'
'
'
'
'

1
1
i

delete pComputer;

Notice how we configure the Computer .-~
object with a Factory object! -~

Software Engineering Design.: Theory and Practice

26

ABSTRACT FACTORY STEP-BY-STEP SUMMARY

» As seen, the Abstract Factory pattern can be used over and over to support
new family of products or to add new products to existing ones. When
designing with the Abstract Factory, execute the following steps:

1. Design the product interfaces (e.g., Cpu, Monitor, and Keyboard)

2. Identify the different families or groups required for the problem (e.g.,
standard vs. advanced computers)

3. For each group identified in step 2, design concrete products that realize the
respective product interfaces identified in step 1.

4. Create the factory interface (e.g., ComputerPartsFactory). The factory
interface contains #n interface methods, one for each product interface
identified in step 1.

5. For each family or group identified in step 2, create concrete factories that
realize the factory interface created in step 4.

6. Associate each concrete factory from step 5 with their respective products
from step 3.

7. Create the Client (e.g., Computer) which is associated with both product and
factory interfaces created in steps 1 and 4, respectively.

10/29/2012 Software Engineering Design: Theory and Practice 27

CONSEQUENCES OF ABSTRACT FACTORY

Solution Explorer * 0 x

> Cons al2E4

v

[Z] book_abstract_factory_example
. - [gd EBxternal Dependencies
Large number of classes are required - 4 L Heodier Fles
\\] AdvancedComputerPartsFactory.h
)] AdvancedCpu.h
h] AdvancedKeyboard.h
AdvancedMenitor.h

\\\\\\“ !
> PrOS >] Cornputer.h

v

v

h| ComputerPartsFactory.h

I
Isolates concrete product classes so that reusing o
B
B
i

:] Monitor.h
them becomes casicr h| StandardComputerPartsFactory.h
. . . . h] StandardCpu.h
Promotes consistency within specific product) StandardKeyboard
] StandardManitor.h

families. 1 Resource Files

4 | Source Files

Adding new families of products require no & AdvancedComputerPartsFactory.cop

G+ AdvancedCpu.cpp
modification to existing code. e enrdcPp
ance oniorn.cpp
¢+ book_abstract_factory_example.cpp

= Additions are made through extension, therefore, &1 Computercpp
Ob€y11’1g the OCP ©+ ComputerPartsFactory.cpp

&4 Cpu.cpp
. . . ¢ Keyboard.c
Helps minimize the degree of complexity when 3 Monitorcpp.
. ¢ StandardComputerPartsFactory.cpp
changing the system to meet future needs. 3 StandardCpu.cpp
. . . . ¢ StandardKeyboard.cpp
= 1.e., increases modifiability ¢ StandardMonitor.cpp

ReadMe.bxt

.:j SR I Team Explorer BB Class View

10/29/2012

Software Engineering Design: Theory and Practice 28

WHAT’S NEXT...

» In this session, we presented fundamentals concepts of design patterns and
creational design patterns, including:

v' Abstract Factory

» In the next sessions, we will continue the presentation on creational design
patterns, including;:
v" Factory method
v" Builder
v" Prototype
v" Singleton

10/29/2012 Software Engineering Design: Theory and Practice 29

REFERENCES

» [1] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software. Boston:

Addison-Wesley, 1995.

10/29/2012 Software Engineering Design: Theory and Practice

30

