
Software Engineering Design: Theory and Practice
by Carlos E. Otero

CHAPTER 6: CREATIONALDESIGN PATTERNS

SESSION I: OVERVIEW OF DESIGN PATTERNS,

ABSTRACT FACTORY

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:

Theory and Practice. Any other reproduction or use is prohibited without the express written

permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/29/2012 1Software Engineering Design: Theory and Practice

SESSION’SAGENDA

� Patterns in Detailed Design

� Again, Architectural vs. Design Patterns.

� Classification of Design Patterns

� Purpose

� Scope� Scope

� Documenting Design Patterns

� Creational Design Patterns

� Abstract Factory

� Computer Store Example

� What’s next…

10/29/2012 Software Engineering Design: Theory and Practice 2

PATTERNS IN DETAILED DESIGN

� In the previous sessions, the concept of patterns was introduced with an
emphasis on software architecture.

� During detailed design, a wide variety of design patterns exist for providing
solutions to recurring problems; these are documented by the GoF.

� Remember, in 1994, Gamma, Helm, Johnson, and Vlissides—better known as
the Gang of Four (GoF)—published their influential work that focused on a
finer-grained set of object-oriented detailed design solutions that could be used finer-grained set of object-oriented detailed design solutions that could be used
in different problems “a million times over, without ever doing it the same way
twice.”

� Influenced by Alexander’s work on architectural patterns, they called these Design
Patterns.

� Their work resulted in the creation of a catalogue of 23 (detailed design) patterns.

� Each pattern was described in detail, using a specific pattern specification format.

� Design patterns are recurring solutions to object-oriented design problems in a
particular context.

� They are different than architectural patterns!

10/29/2012 Software Engineering Design: Theory and Practice 3

PATTERNS IN DETAILED DESIGN

� Architectural vs. Design Patterns

� Architectural patterns take place during the architecture activity of the software

design phase; therefore, they serve best to identify the major components and

interfaces of the system.

� Design Patterns take place during detailed design; therefore, the serve best to

identify the inner structure of components identified during the architecture activity.

� Architectural patterns are too abstract to be translated directly to working code. � Architectural patterns are too abstract to be translated directly to working code.

Although they provide the general structure of the system, they do not fill the

gaps required to create working code directly from the model.

� Design Patterns provided the details necessary for creating working code.

� Architectural patterns have a direct effect on the architecture of software and

are associated with specific system types (e.g., interactive systems)

� Design Patterns have no direct effect on the architecture of systems and are

independent of the type of systems. That is, a specific design pattern, e.g., the

observer, can be used within every component specified by all architectural patterns.

10/29/2012 Software Engineering Design: Theory and Practice 4

CLASSIFICATION OF DESIGN PATTERNS

� Design patterns can be classified based on:

� Purpose

� Scope

� The purpose of a design pattern identifies the essence of the pattern; therefore, it serves
as fundamental differentiation criterion between design patterns. The three types of
purposes used for classification are:

� Creational

� Patterns that deal with creation of objects.

� Structural

� Patterns that deal with creation of structures form existing ones.

� Behavioral

� Patterns that deal with how classes interact, the variation of behavior, and the assignment of
responsibility between objects.

� The scope criterion captures whether a design pattern primarily applies to classes (during
design time) or objects (during run-time).

� Although we will use the scope criterion when discussing specific design patterns, scope is not
used much in practice. The dominant criterion for classifying (and talking about) pattern is the
purpose criterion (i.e., creational, structural, and behavioral).

10/29/2012 Software Engineering Design: Theory and Practice 5

DOCUMENTING DESIGN PATTERNS

NoteNoteNoteNote::::
The The The The GoFGoFGoFGoF identified 13 categories for identified 13 categories for identified 13 categories for identified 13 categories for
documenting design patterns. Together, documenting design patterns. Together, documenting design patterns. Together, documenting design patterns. Together,
these categories provide detailed these categories provide detailed these categories provide detailed these categories provide detailed
information of existing design patterns information of existing design patterns information of existing design patterns information of existing design patterns
and provide direction for documenting and provide direction for documenting and provide direction for documenting and provide direction for documenting
future patterns.future patterns.future patterns.future patterns.

10/29/2012 Software Engineering Design: Theory and Practice 6

future patterns.future patterns.future patterns.future patterns.

ImportantImportantImportantImportant::::
In this course, we’re not concerned with In this course, we’re not concerned with In this course, we’re not concerned with In this course, we’re not concerned with
presenting this extensive documentation presenting this extensive documentation presenting this extensive documentation presenting this extensive documentation
for each pattern, so you won’t see this in for each pattern, so you won’t see this in for each pattern, so you won’t see this in for each pattern, so you won’t see this in
future presentations of design patterns!future presentations of design patterns!future presentations of design patterns!future presentations of design patterns!

CREATIONALDESIGN PATTERNS

� Creational design patterns abstract and control the way objects are created

in software applications.

� They do so by specifying a common creational interface.

� By controlling the creational process with a common interface, enforcing

creational policies become easier, therefore giving systems the ability to

create objects that share a common interface but vary widely in structure create objects that share a common interface but vary widely in structure

and behavior.

� Examples of creational patterns include:

� The Abstract Factory

� The Factory Method

� The Builder

� The Prototype

� The Singleton

10/29/2012 Software Engineering Design: Theory and Practice 7

THEABSTRACT FACTORY

� The Abstract Factory is an object-creational design pattern intended to
manage and encapsulate the creation of a set of objects that conceptually
belong together and that represent a specific family of products.

� According to the GoF [1], the intent of the Abstract Factory is to

� Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.without specifying their concrete classes.

� Like all creational patterns, Abstract Factory is composed of creator classes
and product classes.

� As it will be seen, some creational patterns fuse the creator and product into
one class.

� At first, the Abstract Factory may seem confusing because of the number of
classes required, however, when you take a closer look at the pattern, you’ll see
that the structural relationships required are modeled over and over the same
way as new products are added to the design.

10/29/2012 Software Engineering Design: Theory and Practice 8

THEABSTRACT FACTORYDESIGN PATTERN

Products need to obey the Products need to obey the Products need to obey the Products need to obey the
Product interface!Product interface!Product interface!Product interface!

Clients only know about creator and product Clients only know about creator and product Clients only know about creator and product Clients only know about creator and product
interfaces! This allows us to vary behavior interfaces! This allows us to vary behavior interfaces! This allows us to vary behavior interfaces! This allows us to vary behavior

without changing client code!without changing client code!without changing client code!without changing client code!

Factories need to obey the Factories need to obey the Factories need to obey the Factories need to obey the
Factory interface!Factory interface!Factory interface!Factory interface!

10/29/2012 Software Engineering Design: Theory and Practice 9

ImportantImportantImportantImportant: Notice the Pattern!: Notice the Pattern!: Notice the Pattern!: Notice the Pattern!
Adding other products for existing families Adding other products for existing families Adding other products for existing families Adding other products for existing families
requires adding another AbstractProduct requires adding another AbstractProduct requires adding another AbstractProduct requires adding another AbstractProduct
interface and concrete product classes!interface and concrete product classes!interface and concrete product classes!interface and concrete product classes!

ProductProductProductProduct
ClassesClassesClassesClasses

CreatorCreatorCreatorCreator
ClassesClassesClassesClasses

ImportantImportantImportantImportant: Notice the Pattern!: Notice the Pattern!: Notice the Pattern!: Notice the Pattern!
Adding a new family of products requires Adding a new family of products requires Adding a new family of products requires Adding a new family of products requires
adding another Factory, AbstractProduct adding another Factory, AbstractProduct adding another Factory, AbstractProduct adding another Factory, AbstractProduct
interface and concrete product classes!interface and concrete product classes!interface and concrete product classes!interface and concrete product classes!

THEABSTRACT FACTORYDESIGN PATTERN

ImportantImportantImportantImportant: : : :
Adding a new Adding a new Adding a new Adding a new
family of products!family of products!family of products!family of products!

10/29/2012 Software Engineering Design: Theory and Practice 10

ConcreteProductA3 ConcreteProductB3
ConcreteFactory3

+createProductB()

+createProductA()

A New Family of Products A New Family of Products A New Family of Products A New Family of Products
has been added!has been added!has been added!has been added!

THEABSTRACT FACTORYDESIGN PATTERN

A New Product has been A New Product has been A New Product has been A New Product has been
added to existing families!added to existing families!added to existing families!added to existing families!

AbstractProductC

<<interface>>

+createProductC()

ImportantImportantImportantImportant: : : :
Adding a new Adding a new Adding a new Adding a new
product to existing product to existing product to existing product to existing
family of products!family of products!family of products!family of products!

10/29/2012 Software Engineering Design: Theory and Practice 11

ConcreteProductA3 ConcreteProductB3
ConcreteFactory3

+createProductB()

+createProductA()

ConcreteProductC2

ConcreteProductC3

ConcreteProductC1

+createProductC()

+createProductC()

THEABSTRACT FACTORY

—VERY SIMPLE AND FICTIONAL EXAMPLE —

� Consider a software system for a computer store, where the store carries only two types
of computers for sale:
� Top of the line computer, we’ll call these advanced computers

� Inexpensive computers, we’ll call these standard computers

� Obviously, a computer store will need to carry more computers in the future!

� Advanced computers are made up of “advanced computer products,” e.g. the latest
multi-core CPU, wireless keyboard, advanced monitor (e.g., widescreen large 3D),
advanced graphics & sound card, etc.
� For simplicity, we’ll only use CPU, keyboard, and Monitor for our example.

� Standard computers are made up of “standard computer products,” e.g., single core CPU,
wired keyboard, small screen monitor, low-grade graphics and sound, etc.
� For simplicity, we’ll only use CPU, keyboard, and Monitor for our example.

� The system is designed so that it searches remote information sources, e.g. online
websites, remote databases, etc. for product information, such as:
� Product reviews

� Customer’s comments from specific websites, e.g., Amazon.com

� Manufacturers’ comments

� …

10/29/2012 Software Engineering Design: Theory and Practice 12

THEABSTRACT FACTORY

—VERY SIMPLE AND FICTIONAL EXAMPLE —

Information

SourceInformation

Source

Each computer is made up Each computer is made up Each computer is made up Each computer is made up
of different productsof different productsof different productsof different products

10/29/2012 Software Engineering Design: Theory and Practice 13

Information

Source

Information

Source

Information

Source

Information

Source

Information

Source

Computer StoreComputer StoreComputer StoreComputer Store

CustomerCustomerCustomerCustomer

Each computer product is associated with one or Each computer product is associated with one or Each computer product is associated with one or Each computer product is associated with one or
more information sources. These sources are more information sources. These sources are more information sources. These sources are more information sources. These sources are

used to find out information about the product!used to find out information about the product!used to find out information about the product!used to find out information about the product!

ABSTRACT FACTORY FOR COMPUTER STORE

10/29/2012 Software Engineering Design: Theory and Practice 14

ProductProductProductProduct
ClassesClassesClassesClasses

CreatorCreatorCreatorCreator
ClassesClassesClassesClasses

Let’s break it down in the next slides…Let’s break it down in the next slides…Let’s break it down in the next slides…Let’s break it down in the next slides…

Cpu
<<interface>>

+Cpu(void)
+~Cpu(void)
+displayCpuInformation(void): void

Monitor
<<interface>>

Notice how we create Notice how we create Notice how we create Notice how we create
interfaces in C++interfaces in C++interfaces in C++interfaces in C++

Notice the italics to denote Notice the italics to denote Notice the italics to denote Notice the italics to denote
the abstract methodthe abstract methodthe abstract methodthe abstract method

This means that you cannot instantiate This means that you cannot instantiate This means that you cannot instantiate This means that you cannot instantiate
objects from this abstract classobjects from this abstract classobjects from this abstract classobjects from this abstract class

10/29/2012 Software Engineering Design: Theory and Practice 15

+Monitor(void)
+~Monitor(void)
+displayMonitorInformation(void): void

Keyboard
<<interface>>

+Keyboard(void)
+~Keyboard(void)
+displayKeyboardInformation(void): void

Derived classes must provide implementation for Derived classes must provide implementation for Derived classes must provide implementation for Derived classes must provide implementation for
this method before they can be instantiated!this method before they can be instantiated!this method before they can be instantiated!this method before they can be instantiated!

THE CPU PRODUCT DESIGN

Cpu
<<interface>>

+Cpu(void)
+~Cpu(void)
+displayCpuInformation(void): void

AdvancedCpu

+displayCpuInformation(void): void

StandardCpu

+displayCpuInformation(void): void

10/29/2012 Software Engineering Design: Theory and Practice 16

+displayCpuInformation(void): void +displayCpuInformation(void): void

THE MONITOR PRODUCT DESIGN

Monitor
<<interface>>

+Monitor(void)
+~Monitor(void)
+displayMonitorInformation(void): void

AdvancedMonitor

+displayMonitorInformation(void): void

StandardMonitor

+displayMonitorInformation(void): void

10/29/2012 Software Engineering Design: Theory and Practice 17

THE KEYBOARD PRODUCT DESIGN

Keyboard
<<interface>>

+Keyboard(void)
+~Keyboard(void)
+displayKeyboardInformation(void): void

AdvancedKeyboard

+displayKeyboardInformation(void): void

StandardKeyboard

+displayKeyboardInformation(void): void

Hopefully by this point you can start seeing Hopefully by this point you can start seeing Hopefully by this point you can start seeing Hopefully by this point you can start seeing
the pattern for designing products!the pattern for designing products!the pattern for designing products!the pattern for designing products!

10/29/2012 Software Engineering Design: Theory and Practice 18

THE CPU PRODUCT IMPLEMENTATION

Database for

Advanced Products

File with

Information of

Advanced

Products

The code in this function knows The code in this function knows The code in this function knows The code in this function knows
how to retrieve information from how to retrieve information from how to retrieve information from how to retrieve information from

data source A, which can use data source A, which can use data source A, which can use data source A, which can use
specific format, location, etc.specific format, location, etc.specific format, location, etc.specific format, location, etc.

Information Source AInformation Source AInformation Source AInformation Source A

10/29/2012 Software Engineering Design: Theory and Practice 19

Database for

Standard Products

File with

Information of

Standard

Products

The code in this function knows The code in this function knows The code in this function knows The code in this function knows
how to retrieve information from how to retrieve information from how to retrieve information from how to retrieve information from

data source B, which can use data source B, which can use data source B, which can use data source B, which can use
specific format, location, etc.specific format, location, etc.specific format, location, etc.specific format, location, etc.

Information Source BInformation Source BInformation Source BInformation Source B

OTHER PRODUCT IMPLEMENTATION

10/29/2012 Software Engineering Design: Theory and Practice 20

All other products are All other products are All other products are All other products are
implemented using the implemented using the implemented using the implemented using the

same pattern!same pattern!same pattern!same pattern!

DESIGN THE FACTORY INTERFACE AND CONCRETE FACTORIES

ComputerPartsFactory
<<interface>>

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

AdvancedComputerPartsFactory StandardComputerPartsFactory
AdvancedCpu

AdvancedMonitor

+displayMonitorInformation(void): void

StandardMonitor

+displayMonitorInformation(void): void

StandardCpu

10/29/2012 Software Engineering Design: Theory and Practice 21

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

AdvancedCpu

+displayCpuInformation(void): void

AdvancedKeyboard

+displayKeyboardInformation(void): void

StandardKeyboard

+displayKeyboardInformation(void): void

StandardCpu

+displayCpuInformation(void): void

ImportantImportantImportantImportant::::
This design connects the products This design connects the products This design connects the products This design connects the products
designed in the previous slides with the designed in the previous slides with the designed in the previous slides with the designed in the previous slides with the
factories used to abstract their creation!factories used to abstract their creation!factories used to abstract their creation!factories used to abstract their creation!

THEADVANCED COMPUTER PARTS FACTORY

These are equivalent!These are equivalent!These are equivalent!These are equivalent!

10/29/2012 Software Engineering Design: Theory and Practice 22

THE STANDARD COMPUTER PARTS FACTORY

These are equivalent!These are equivalent!These are equivalent!These are equivalent!

10/29/2012 Software Engineering Design: Theory and Practice 23

THE CLIENT COMPUTER DESIGN

Computer

+Computer(computerPartsFactory: ComputerPartsFactory*)

Cpu
<<interface>>

ComputerPartsFactory
<<interface>>

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

These are equivalent!These are equivalent!These are equivalent!These are equivalent!

10/29/2012 Software Engineering Design: Theory and Practice 24

+Computer(computerPartsFactory: ComputerPartsFactory*)
+displayMonitorInfo(void): void
+displayCpuInfo(void): void
+displayKeyboardInfo(void): void

+Cpu(void)
+~Cpu(void)
+displayCpuInformation(void): void

Monitor
<<interface>>

+Monitor(void)
+~Monitor(void)
+displayMonitorInformation(void): void

Keyboard
<<interface>>

+Keyboard(void)
+~Keyboard(void)
+displayKeyboardInformation(void): void

-_cpu

-_monitor

-_keyboard

Notice the named associations, which Notice the named associations, which Notice the named associations, which Notice the named associations, which
are specified with private visibility!are specified with private visibility!are specified with private visibility!are specified with private visibility!Code from model!Code from model!Code from model!Code from model!

THE CLIENT COMPUTER DESIGN

The Computer object is The Computer object is The Computer object is The Computer object is
configured with a Factory configured with a Factory configured with a Factory configured with a Factory
object. The Computer object object. The Computer object object. The Computer object object. The Computer object

delegates creation of delegates creation of delegates creation of delegates creation of
products to its Factory!products to its Factory!products to its Factory!products to its Factory!

If you want and advanced computer, pass in If you want and advanced computer, pass in If you want and advanced computer, pass in If you want and advanced computer, pass in
an AdvancedComputerFactory, otherwise, an AdvancedComputerFactory, otherwise, an AdvancedComputerFactory, otherwise, an AdvancedComputerFactory, otherwise,

pass in a StandardComputerFactorypass in a StandardComputerFactorypass in a StandardComputerFactorypass in a StandardComputerFactory

10/29/2012 Software Engineering Design: Theory and Practice 25

Since our design relies on Since our design relies on Since our design relies on Since our design relies on
interfaces only, this code interfaces only, this code interfaces only, this code interfaces only, this code
works for both standard works for both standard works for both standard works for both standard

and advanced computers!and advanced computers!and advanced computers!and advanced computers!

Computer

+Computer(computerPartsFactory: ComputerPartsFactory*)
+displayMonitorInfo(void): void
+displayCpuInfo(void): void
+displayKeyboardInfo(void): void

Cpu
<<interface>>

+Cpu(void)
+~Cpu(void)
+displayCpuInformation(void): void

Monitor
<<interface>>

+Monitor(void)
+~Monitor(void)
+displayMonitorInformation(void): void

Keyboard
<<interface>>

+Keyboard(void)
+~Keyboard(void)
+displayKeyboardInformation(void): void

-_cpu

-_monitor

-_keyboard

ComputerPartsFactory
<<interface>>

+createMonitor(void): Monitor*
+createCpu(void): Cpu*
+createKeyboard(void): Keyboard*

ABSTRACT FACTORY EXAMPLE – PUTTING IT ALLTOGETHER

1

10/29/2012 Software Engineering Design: Theory and Practice 26

2

3

4

Notice how we configure the Computer Notice how we configure the Computer Notice how we configure the Computer Notice how we configure the Computer
object with a Factory object!object with a Factory object!object with a Factory object!object with a Factory object!

ABSTRACT FACTORY STEP-BY-STEP SUMMARY

� As seen, the Abstract Factory pattern can be used over and over to support
new family of products or to add new products to existing ones. When
designing with the Abstract Factory, execute the following steps:

1. Design the product interfaces (e.g., Cpu, Monitor, and Keyboard)

2. Identify the different families or groups required for the problem (e.g.,
standard vs. advanced computers)

3. For each group identified in step 2, design concrete products that realize the
respective product interfaces identified in step 1.respective product interfaces identified in step 1.

4. Create the factory interface (e.g., ComputerPartsFactory). The factory
interface contains n interface methods, one for each product interface
identified in step 1.

5. For each family or group identified in step 2, create concrete factories that
realize the factory interface created in step 4.

6. Associate each concrete factory from step 5 with their respective products
from step 3.

7. Create the Client (e.g., Computer) which is associated with both product and
factory interfaces created in steps 1 and 4, respectively.

10/29/2012 Software Engineering Design: Theory and Practice 27

CONSEQUENCES OFABSTRACT FACTORY

� Cons

� Large number of classes are required

� Pros

� Isolates concrete product classes so that reusing

them becomes easier

� Promotes consistency within specific product � Promotes consistency within specific product

families.

� Adding new families of products require no

modification to existing code.

� Additions are made through extension, therefore,

obeying the OCP.

� Helps minimize the degree of complexity when

changing the system to meet future needs.

� i.e., increases modifiability

10/29/2012 Software Engineering Design: Theory and Practice 28

WHAT’S NEXT…

� In this session, we presented fundamentals concepts of design patterns and

creational design patterns, including:

� Abstract Factory

� In the next sessions, we will continue the presentation on creational design

patterns, including:

� Factory method� Factory method

� Builder

� Prototype

� Singleton

10/29/2012 Software Engineering Design: Theory and Practice 29

REFERENCES

� [1] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software. Boston:

Addison-Wesley, 1995.

10/29/2012 Software Engineering Design: Theory and Practice 30

