
Software Engineering Design: Theory and Practice
by Carlos E. Otero

CHAPTER 8: PRINCIPLES OF CONSTRUCTION DESIGN

SESSION I: OVERVIEW OF CONSTRUCTION DESIGN

FLOW-, STATE-, AND TABLE-BASED DESIGNS

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:

Theory and Practice. Any other reproduction or use is prohibited without the express written

permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/24/2012 1Software Engineering Design: Theory and Practice

SESSION’S AGENDA

� Overview of Construction Design

� Algorithmic Viewpoint

� Stylistic Viewpoint

� Algorithmic Viewpoint

� Flow-based

� UML Activity Diagrams

� State-based

� UML State Diagrams

� Table-based

� What’s next…

10/24/2012 Software Engineering Design: Theory and Practice 2

WHAT IS CONSTRUCTION DESIGN?

� Transition from the software design phase to the construction phase should
occur with minimal effort.

� In some cases, component designs provide enough detail to allow their
transformation from design artifact to code easily.

� In other cases, a more fine-grained level of design detail is required.� In other cases, a more fine-grained level of design detail is required.

� Construction design is the lowest level of detailed design that addresses the
modeling and specification of function implementations.

� This is necessary to evaluate the quality of the system at the construction level,
e.g., modifiability, testability, performance, complexity, etc.

� Construction design deals mostly with the analysis and design of algorithms.
The IEEE refers to this form of design as designing using a “The Algorithmic
Viewpoint” [1]

10/24/2012 Software Engineering Design: Theory and Practice 3

WHAT IS CONSTRUCTION DESIGN?

� The algorithm viewpoint addresses construction design from a dynamic

(behavioral) perspective, which provides the description of operations

(such as methods and functions), the internal details and logic of each

design entity [1] .

� The algorithmic viewpoint can be realized using the following:

� Graphical Designs

� Flow-based

� State-based

� Tabular Designs

� Lead to table-based design and implementation

� The algorithm viewpoint minimizes complexity during construction by

providing details required by programmers to implement the function's

code.

10/24/2012 Software Engineering Design: Theory and Practice 4

WHAT IS CONSTRUCTION DESIGN?

� A separate but closely related task performed to achieve quality at the
construction level is the enforcing of styles for software construction. We’ll
refer to this as the “Stylistic Viewpoint” of construction design.

� These styles play a significant role in shaping the systems’ modifiability quality
attribute!

� In the construction design activity, styles are used to provide a consistent
approach for structuring code by defining styles for code elements, such as:approach for structuring code by defining styles for code elements, such as:

� Code formatting

� Naming conventions

� Documentation

� Etc.

� The application of construction styles are mostly an activity that occurs during
construction, however, due to the power of today's modeling tools, the
application of styles are prevalent during the detailed design phase.

10/24/2012 Software Engineering Design: Theory and Practice 5

WHY STUDY CONSTRUCTION DESIGN?

� From the algorithmic viewpoint, construction design is important because it
provides the means for evaluating different implementations for a particular
function before committing to it.

� Behavioral designs at this level provide the means to:

� Evaluate a function's completeness, complexity, testability and maintainability.

� They also provide the means for analysts of algorithms in regard to time-space
performance and processing logic prior to implementation [1]. This can have performance and processing logic prior to implementation [1]. This can have
significant meaning when designing for performance!

� Finally, since they provide a representation of the code through graphical and
tabular ways, they increase collaborative evaluation efforts, since other
members without knowledge of programming languages can evaluate the
design and contribute their input.

� These collaboration efforts can lead to improvement in future phases, for example
the testing phase, where construction designs can be used to generate unit test cases,
or the maintenance phase, where construction designs can be used to increase
knowledge and understanding of the software behavior.

10/24/2012 Software Engineering Design: Theory and Practice 6

WHY STUDY CONSTRUCTION DESIGN?

� From the stylistic viewpoint, construction design is important because it

provides heuristics for establishing a common criteria for evaluating the quality

of the structure of code, which has direct effect on code readability, and

therefore maintenance.

� Code that exhibit low quality in terms of readability results in higher

maintenance cost, since it requires more effort to understand [2].maintenance cost, since it requires more effort to understand [2].

� Construction styles are important during the design phase so that generation of

code form design models can be done correctly.

� From the construction phase perspective, construction styles serve as blueprint

that ensures consistency among teams of developers. Finally, as mentioned

before, during the testing and maintenance phase, construction styles increase

readability and understanding of the code, which results in minimized cost.

10/24/2012 Software Engineering Design: Theory and Practice 7

BEHAVIORAL CONSTRUCTION DESIGN

� Behavioral designs at the construction level are used to model complex logic
that is unknown or difficult to understand. Popular examples include:
� Flow-based design

� State-based design

� Table-based design

� Flow-Based design provide a systematic methodology for specifying the logic
and structure of operations using a graphical approach. Two popular
approaches for creating flow-based designs include:
and structure of operations using a graphical approach. Two popular
approaches for creating flow-based designs include:
� Flowcharts

� UML activity diagrams

� Both work well for modeling the internal flow of routines because they can be
defined using sequential process flows, loops, and other complex business logic
or algorithms.
� UML activity diagrams provide powerful constructs for modeling complex logic at
different stages of the SDLC, however, when applied towards modeling logic,
activity diagrams are just another version of flowcharts.

10/24/2012 Software Engineering Design: Theory and Practice 8

FLOW-BASED CONSTRUCTION DESIGN

Elements in Activity Diagrams

10/24/2012 Software Engineering Design: Theory and Practice 9

STATE-BASED CONSTRUCTION DESIGN

� Flow-based designs can be used to model operational logic by identifying
the transitions from activity to activity required to perform an operation.

� However, in some cases, the operational logic of a function or system is
dictated by the different states that the system exhibits during its lifetime.
That is, certain activities can only be performed when a system is in a
particular state. particular state.

� When this occur, the operational logic of a system can be modeled as a
state machine using a (UML) state diagram.

� State diagrams are typically used to model the behavior of complete
system. However, in many practical applications, the state diagram acts as
model for designing the logical structure of one operation that executes the
state machine.

10/24/2012 Software Engineering Design: Theory and Practice 10

STATE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 11

STATE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 12

STATE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 13

STATE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 14

STATE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 15

TABLE-BASED CONSTRUCTION DESIGN

� Many times, the internal logic of routines are made up of complex

conditional statements; each statement evaluating a condition (i.e., a cause)

and providing some action (i.e., an effect) as result.

� This can lead to an increasingly complex nesting structure that is error-

prone, hard to read, and hard to maintain.

� In these cases, the logic design can be managed using a Decision Table [3].

� A decision table is a well structured table that provides the means to

formulate, evaluate, improve the design of complex problems that deal with

cause and effect.

10/24/2012 Software Engineering Design: Theory and Practice 16

TABLE-BASED CONSTRUCTION DESIGN

� The fundamental structure of a decision table contains four main sections:

� Condition

� Action

� Condition Entry

� Action Entry

� The first section is the Condition section, which contains a list of all of the � The first section is the Condition section, which contains a list of all of the
conditions present in the decision problem.

� The second section is the Action section, which contains a list of all
possible outcomes that can result from one or more conditions occurring.

� The third and fourth sections are found in matrix form adjacent to the
Condition and Action sections.

� The matrix adjacent to the Condition section indicate all possible combinations
of conditions for the decision problem, while the matrix adjacent to the Action
section indicates the corresponding actions.

10/24/2012 Software Engineering Design: Theory and Practice 17

TABLE-BASED CONSTRUCTION DESIGN

� Three types of decision tables are as follow [3]:

� Limited Entry Decision Table

� Extended Entry Decision Table

� Mixed Entry Decision Table

� Limited Entry Decision Table (LEDT)

� Simplest type of decision table in which the condition section of the LEDT � Simplest type of decision table in which the condition section of the LEDT
presents Boolean conditional statements.

� That is, the condition section of the LEDT presents features of the design
problem that are either present or not and their combined presence (or absence)
trigger specific actions.

� Therefore, the condition entry section of the LEDT consists of Boolean values,
such as true or false, or yes or no that can be used to define different policies in
the decision problem.

� For a LEDT, the number of distinct elementary policies is 2n, were n is the
number of conditions in the condition section.

10/24/2012 Software Engineering Design: Theory and Practice 18

TABLE-BASED CONSTRUCTION DESIGN

� Limited Entry Decision Table (LEDT) – Example

� Consider the LEDT design for a function that computes discounts for the

purchase of mobile phones.

� Two types of discounts are available, a store discount of $15, and a

manufacturer discount of $30.

10/24/2012 Software Engineering Design: Theory and Practice 19

TABLE-BASED CONSTRUCTION DESIGN

� Sample Implementation…

10/24/2012 Software Engineering Design: Theory and Practice 20

TABLE-BASED CONSTRUCTION DESIGN

� Extended Entry Decision Table (EEDT)

� Whereas the Condition and Action sections of LEDTs contain complete

questions and actions, the Condition and Action sections of the extended entry

decision table (EEDT) are extended into the Action Entry section.

� That is, in LEDTs, the Condition section contained information that could be

used to ask a complete questions, such as “is there a store discount in effect?”

� In EEDT, the Condition and Condition Entry sections of the table are required � In EEDT, the Condition and Condition Entry sections of the table are required

to formulate a complete question, such as “Is the customer a regular, preferred,

or VIP customer?”

� Similarly, the Action section must be combined with the Action Entry section

of the decision table to formulate a complete action, such as “add a free car kit

to the purchase.”

� In addition, the number of possible values for each condition and action in

EEDTs are not bounded to two.

10/24/2012 Software Engineering Design: Theory and Practice 21

TABLE-BASED CONSTRUCTION DESIGN

� Extended Entry Decision Table (EEDT) – Example

� Notice that:� Notice that:

� The number of possible values for each condition and action in EEDTs are not
bounded to two.

� Therefore, the number of policies for EEDT is the product of the number of
possible values for each condition, denoted by

� Where c is the number of conditions

� Vi is the number of values for condition i.

� In this example, the number of policies are 3 x 2 = 6.

� 3 different value types for Condition 1 (i.e., cutomer type is REG/PRE/VIP)

� 2 different value types for Condition 2 (i.e., credit score is GOOD/BAD)

10/24/2012 Software Engineering Design: Theory and Practice 22

c

c

i

i VVVV ×××=∏
=

K21

1

TABLE-BASED CONSTRUCTION DESIGN

� Mixed Entry Decision Table (MEDT)

� Combines LEDTs and EEDTs into one MEDT

� That is, conditions can be questions, with various answers or

� Binary features that are present or not (true or false).

10/24/2012 Software Engineering Design: Theory and Practice 23

TABLE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 24

These are These are These are These are
equivalent!equivalent!equivalent!equivalent!

That ‘s a lot of conditional statements! That ‘s a lot of conditional statements! That ‘s a lot of conditional statements! That ‘s a lot of conditional statements!
Let’s see how we can leverage of tableLet’s see how we can leverage of tableLet’s see how we can leverage of tableLet’s see how we can leverage of table----

based construction to reduce complexity…based construction to reduce complexity…based construction to reduce complexity…based construction to reduce complexity…

TABLE-BASED CONSTRUCTION DESIGN

� Table-based designs lead to efficient construction that has significant lower

complexity.

10/24/2012 Software Engineering Design: Theory and Practice 25

Move the complexity of Move the complexity of Move the complexity of Move the complexity of
the previous conditional the previous conditional the previous conditional the previous conditional
statements to a table!statements to a table!statements to a table!statements to a table!

TABLE-BASED CONSTRUCTION DESIGN

Since we moved the complexity of the Since we moved the complexity of the Since we moved the complexity of the Since we moved the complexity of the
previous conditional statements to a previous conditional statements to a previous conditional statements to a previous conditional statements to a
table, all we have to do now to retrieve table, all we have to do now to retrieve table, all we have to do now to retrieve table, all we have to do now to retrieve
the discount is key into the table!the discount is key into the table!the discount is key into the table!the discount is key into the table!

Compute the discount key!Compute the discount key!Compute the discount key!Compute the discount key!

10/24/2012 Software Engineering Design: Theory and Practice 26

TABLE-BASED CONSTRUCTION DESIGN

10/24/2012 Software Engineering Design: Theory and Practice 27

These are These are These are These are
equivalent!equivalent!equivalent!equivalent!

Notice how much simpler this Notice how much simpler this Notice how much simpler this Notice how much simpler this
version of the code looks!version of the code looks!version of the code looks!version of the code looks!

WHAT’S NEXT…

� In this session, we presented construction design from the algorithmic

viewpoint, including:

� Flow-based design

� State-based design

� Table-based design

� In the next session, we will discuss another form of algorithmic design at � In the next session, we will discuss another form of algorithmic design at

the construction level, the Programming Design Language (PDL). We will

also focuses on the stylistic view of construction design and on quality

evaluation at the construction level.

10/24/2012 Software Engineering Design: Theory and Practice 28

REFERENCES

� [1] IEEE. “IEEE Standard for Information Technology-Systems DESIGN-

Software Design Descriptions.” 2009, p. 175.

� [2] Collar, Emilio Jr. “An Investigation of Programming Code Textbase

Readability Based on a Cognitive Readability Model.” PhD thesis,

University of Colorado at Boulder, 2005.

� [3] Hurley, Richard B. Decision Tables in Software Engineering. New

York: Van Nostrand Reinhold, 1982.York: Van Nostrand Reinhold, 1982.

10/24/2012 Software Engineering Design: Theory and Practice 29

