CHAPTER 8: PRINCIPLES OF CONSTRUCTION DESIGN

SESSION I: OVERVIEW OF CONSTRUCTION DESIGN
FLOW-, STATE-, AND TABLE-BASED DESIGNS

Software Engineering Design: Theory and Practice
by Carlos E. Otero

Software
Engineering
Design

Slides copyright © 2012 by Carlos E. Otero

For non-profit educational use only

May be reproduced only for student use when used in conjunction with Software Engineering Design:
Theory and Practice. Any other reproduction or use is prohibited without the express written
permission of the author.

All copyright information must appear if these slides are posted on a website for student use.

10/24/2012

Software Engineering Design.: Theory and Practice

SESSION’S AGENDA

» Overview of Construction Design
v' Algorithmic Viewpoint
v' Stylistic Viewpoint

» Algorithmic Viewpoint
v Flow-based
= UML Activity Diagrams
v’ State-based
= UML State Diagrams
v’ Table-based

» What’s next...

10/24/2012 Software Engineering Design: Theory and Practice

WHAT IS CONSTRUCTION DESIGN?

» Transition from the software design phase to the construction phase should
occur with minimal effort.

» In some cases, component designs provide enough detail to allow their
transformation from design artifact to code easily.

» In other cases, a more fine-grained level of design detail is required.

» Construction design is the lowest level of detailed design that addresses the
modeling and specification of function implementations.

v" This is necessary to evaluate the quality of the system at the construction level,
e.g., modifiability, testability, performance, complexity, etc.

v" Construction design deals mostly with the analysis and design of algorithms.
The IEEE refers to this form of design as designing using a “The Algorithmic
Viewpoint™” [1]

10/24/2012 Software Engineering Design: Theory and Practice

WHAT IS CONSTRUCTION DESIGN?

» The algorithm viewpoint addresses construction design from a dynamic
(behavioral) perspective, which provides the description of operations
(such as methods and functions), the internal details and logic of each
design entity [1] .

» The algorithmic viewpoint can be realized using the following:

v" Graphical Designs
» Flow-based
= State-based

v" Tabular Designs

= Lead to table-based design and implementation

» The algorithm viewpoint minimizes complexity during construction by
providing details required by programmers to implement the function's
code.

10/24/2012 Software Engineering Design: Theory and Practice

WHAT IS CONSTRUCTION DESIGN?

» A separate but closely related task performed to achieve quality at the
construction level is the enforcing of styles for software construction. We’ll
refer to this as the “Stylistic Viewpoint” of construction design.

v" These styles play a significant role in shaping the systems’ modifiability quality
attribute!

» In the construction design activity, styles are used to provide a consistent
approach for structuring code by defining styles for code elements, such as:

v" Code formatting
v Naming conventions

v Documentation
v Etc.

» The application of construction styles are mostly an activity that occurs during
construction, however, due to the power of today's modeling tools, the
application of styles are prevalent during the detailed design phase.

10/24/2012 Software Engineering Design: Theory and Practice 5

WHY STUDY CONSTRUCTION DESIGN?

» From the algorithmic viewpoint, construction design is important because it
provides the means for evaluating different implementations for a particular
function before committing to it.

» Behavioral designs at this level provide the means to:
v" Evaluate a function's completeness, complexity, testability and maintainability.

v" They also provide the means for analysts of algorithms in regard to time-space
performance and processing logic prior to implementation [1]. This can have
significant meaning when designing for performance!

» Finally, since they provide a representation of the code through graphical and
tabular ways, they increase collaborative evaluation efforts, since other
members without knowledge of programming languages can evaluate the
design and contribute their input.

v" These collaboration efforts can lead to improvement in future phases, for example
the testing phase, where construction designs can be used to generate unit test cases,

or the maintenance phase, where construction designs can be used to increase
knowledge and understanding of the software behavior.

10/24/2012 Software Engineering Design: Theory and Practice 6

WHY STUDY CONSTRUCTION DESIGN?

» From the stylistic viewpoint, construction design is important because it
provides heuristics for establishing a common criteria for evaluating the quality
of the structure of code, which has direct effect on code readability, and
therefore maintenance.

» Code that exhibit low quality in terms of readability results in higher
maintenance cost, since it requires more effort to understand [2].

» Construction styles are important during the design phase so that generation of
code form design models can be done correctly.

» From the construction phase perspective, construction styles serve as blueprint
that ensures consistency among teams of developers. Finally, as mentioned
before, during the testing and maintenance phase, construction styles increase
readability and understanding of the code, which results in minimized cost.

10/24/2012 Software Engineering Design: Theory and Practice 7

BEHAVIORAL CONSTRUCTION DESIGN

» Behavioral designs at the construction level are used to model complex logic
that 1s unknown or difficult to understand. Popular examples include:
v" Flow-based design
v' State-based design
v' Table-based design

» Flow-Based design provide a systematic methodology for specifying the logic
and structure of operations using a graphical approach. Two popular
approaches for creating flow-based designs include:

v" Flowcharts
v UML activity diagrams

» Both work well for modeling the internal flow of routines because they can be
defined using sequential process flows, loops, and other complex business logic
or algorithms.

v UML activity diagrams provide powerful constructs for modeling complex logic at

different stages of the SDLC, however, when applied towards modeling logic,
activity diagrams are just another version of flowcharts.

10/24/2012 Software Engineering Design: Theory and Practice 8

FLOW-BASED CONSTRUCTION DESIGN

Ackivityd

Case Statement

Elements in Activity Diagrams Falsa

. Initial State
® Final State

----------------------------------- Activiby1 nction

o Branch

_— Transition ;

i

: Ackivity 1
true E

false

__ >
Activibys krue False
Ackivibw?
Ackivity2 Ackivity's
While Loop If Skatemnent

10/24/2012 Software Engineering Design: Theory and Practice

STATE-BASED CONSTRUCTION DESIGN

» Flow-based designs can be used to model operational logic by identifying
the transitions from activity to activity required to perform an operation.

» However, in some cases, the operational logic of a function or system is
dictated by the different states that the system exhibits during its lifetime.
That is, certain activities can only be performed when a system is in a
particular state.

» When this occur, the operational logic of a system can be modeled as a
state machine using a (UML) state diagram.

» State diagrams are typically used to model the behavior of complete
system. However, in many practical applications, the state diagram acts as
model for designing the logical structure of one operation that executes the
state machine.

10/24/2012 Software Engineering Design: Theory and Practice 10

STATE-BASED CONSTRUCTION DESIGN

Self Test Msg Received ———— Tests did notpass —————,
Self Test Fault
A/ e
Self Test Msg Received Fault Processing Complete
—
Power O W Wi |
.—> awern Test Passed Power Down
Operational
R L
Shut Down Msg Received
Get Status Msg _
Update Software Msg All Other Messages Received
Power Down Process Complete

10/24/2012

Software Engineering Design: Theory and Practice

STATE-BASED CONSTRUCTION DESIGN

S/ The state machine's execute method.
void EmbeddedComponent: :execute ()

f/ Emecute the state machine. _compnent3tate is a member variable of the

f/ EmbeddedComponent class.

switch(_componentState)

case PowerOmnState:

S/ Execute in the power on =state. When finished,
S/ executing function to determine if a state change iz reguired
and set the state appropriately.

S/ (or mot)

allow the

S/ provided by executing functions in all other states.

executePowerOnState () :

break:;

case SelfTestState:

// Execute in the self test state.
executeSelfTestState ()

break:

caze OperationalState:

// Execute in the operational state.
executelperationalState ()

break:

case FaultState:

S/ Execute in the fault state.

executeFaultState () !
break:

caze PowerDownState:

This capability is

Self Test Msg Received

o e .
Self Test

Tests did not pass

Power On

®

Test Passed

|

Self Test Msg Received

| T

Get Status Msg
Update Software Msg

Cperational

Fault Processing Complete

Power Down

Shut Down Msg Received

All Other Messages Received

Power Down Process Complete

S/ Execute in the power down 3tate.

executePowerDownState ()

break:;

default:
f/ inwvalid state,
break:

log error.

10/24/2012

Software Engineering Design: Theory and Practice

12

STATE-BASED CONSTRUCTION DESIGN

void EmbeddedComponent::executePowerOnState ()

S/ Assume messages are received and placed in a blocking message gueue.
// Therefore, the meszagefueue.read call is a blocking call.
Me=zsage* message = messageQueue.read (WAIT FOREVER);

// Betrieve the message's id.
Mes=zageldlype messageld = message->getId() !

// This state only processes three messages according to the s3tate
S/ diagram.
if{ mezszageld == UpdateSoftwareM=gId)
S/ Cast meszzage to an UpdateSoftwareMsg.
// Betrieve the software image from the message and update software.
}
else if| messageld == GetStatusMsgId)
// Betrieve ztatus from File System and return to client.
}
glse if({ messageld == SelfTestMsgId)
S/ Cast meszage to a 5elfTestMsag.
// Betrieve the type of self test and change =state.
zelfTesztType = meszage->getTestTvpe():
_cnmpnnentStEte = SelfTestState;
}
elze
J/ BAny other message received inm thisz state results in an error.
// Log the specific error here and do not change state.

Self Test

Self Test Msq Recsived Fault Processing Complete

Fower Down

Shut Down Msg Received

Self Test Msg Received

Power On

Get Status Msg
Update Software Msg All Other Messages Received

Tests did not pass

Test Passed

Operational

Power Dawn Process Complete

10/24/2012

Software Engineering Design: Theory and Practice

13

STATE-BASED CONSTRUCTION DESIGN

vold EmbeddedComponent: :executelSelfTestState()
/4 Ho messages are processed during self test.

S Perform either a simple, normal, or advanced test. Advanced tests

S perform a complete teat of the syatem, therefore they take longer to
S complete.

if | performTest (_=zelfTestType))

S Boftware and hardware are working properly. Log results and change
/f a3tate to the operational state.

_componentState = OperationalState;
}
else
S Faulty avstem saoftware or hardware! Log resultz and change 3tate
S/ to the Fault state.
_componentState = FaultS5tate;

}

Self Test Msg Received ~————- Tests did not pass
Self Test

e
Self Test Msg Received

Fault Processing Complete

Power On
H Test Passed

Power Down

Cperational

Shut Down Msg Received

Get Status Msg
Update Software Msg All Other Messages Received
Power Down Process Complete

10/24/2012 Software Engineering Design: Theory and Practice

14

STATE-BASED CONSTRUCTION DESIGN

volid EmbeddedComponent: :executelperationalState()

S/ Assume messages are received and placed in a blocking message gueue.
S Therefore, the messagelueue.read call iz a blocking call.
Meszzage* message = messagelueue.read (WAIT FOREVER) :

S Betrieve the message's id.
MessageldIype messageld = message->getId() !

/{ Procezs messages according to the state diagram.
if(/* messageld == x */)
// Process message X.
}
gelse if| /¥ meszageld == v */]
/{ Proceszs meszage V.
}
glse if (f* ... *#/
£
}
else {
S/ Invalid message. Log errorx.

Self Test Msg Received ~————, Tests did not pass
Self Test

S —

Self Test Msg Received Fault Processing Complete

. = Power On
TestPassed ————. Power Down
Operational

T Shut Down Msg Received
Get Status Msg

Update Software Msg All Other Messages Received

Power Down Process Complete

10/24/2012 Software Engineering Design: Theory and Practice 15

TABLE-BASED CONSTRUCTION DESIGN

» Many times, the internal logic of routines are made up of complex

conditional statements; each statement evaluating a condition (i.e., a cause)

and providing some action (i.e., an effect) as result.

» This can lead to an increasingly complex nesting structure that is error-
prone, hard to read, and hard to maintain.

» In these cases, the logic design can be managed using a Decision Table [3].

» A decision table 1s a well structured table that provides the means to

formulate, evaluate, improve the design of complex problems that deal with

cause and effect.

10/24/2012 Software Engineering Design: Theory and Practice

16

TABLE-BASED CONSTRUCTION DESIGN

» The fundamental structure of a decision table contains four main sections:

v" Condition

v' Action

v" Condition Entry
v' Action Entry

» The first section is the Condition section, which contains a list of all of the

Condiiion

Condition Entry

Action

Action Entry

conditions present in the decision problem.
» The second section is the Action section, which contains a list of all

possible outcomes that can result from one or more conditions occurring.
» The third and fourth sections are found in matrix form adjacent to the

Condition and Action sections.
v" The matrix adjacent to the Condition section indicate all possible combinations

of conditions for the decision problem, while the matrix adjacent to the Action

section indicates the corresponding actions.

10/24/2012

Software Engineering Design: Theory and Practice

17

TABLE-BASED CONSTRUCTION DESIGN

» Three types of decision tables are as follow [3]:
v" Limited Entry Decision Table
v" Extended Entry Decision Table
v Mixed Entry Decision Table

» Limited Entry Decision Table (LEDT)

v" Simplest type of decision table in which the condition section of the LEDT
presents Boolean conditional statements.

v" That is, the condition section of the LEDT presents features of the design
problem that are either present or not and their combined presence (or absence)
trigger specific actions.

v" Therefore, the condition entry section of the LEDT consists of Boolean values,
such as true or false, or yes or no that can be used to define different policies in
the decision problem.

v" For a LEDT, the number of distinct elementary policies is 2", were 7 is the
number of conditions in the condition section.

10/24/2012 Software Engineering Design: Theory and Practice 18

TABLE-BASED CONSTRUCTION DESIGN

» Limited Entry Decision Table (LEDT) — Example
v" Consider the LEDT design for a function that computes discounts for the
purchase of mobile phones.
v Two types of discounts are available, a store discount of $15, and a
manufacturer discount of $30.

Get Phone Discount Pl | P2 | P3 | P4
Store Discount T T F F
Manufactrer Discount T F T F
$15 Discount X X
$£30 Manufacturer Discount X X
No Discount (50) X

10/24/2012 Software Engineering Design: Theory and Practice

TABLE-BASED CONSTRUCTION DESIGN

» Sample Implementation...

et Phone Discount

P2

P3

P4

Store Discount

Manufacturer Discount

|

int getPhoneDiscount () $15 Discount

%30 Manufacturer Discount

I 1 !

const int Storeliscount = 15; No Discount ($0)

con3t int ManufacturerDiscount = 30;

// The total added phone discount.
int phoneDiscount = 0;

S Determine if the store discount applies.
if(isS5torelDiszcountactive)

// Epply the store's discount.
phoneDiscount += StoreDiscount;

}

il =

f/ Determine if the manufacturer discount applies. ¢--c-c-------
if(isManufacturerDizcounthActive)

S Apply the manufacturer's discount.
phoneDiscount += ManufacturerDiscount:
}

J/ Return the total added phone discount.
return phoneliscount;

10/24/2012 Software Engineering Design: Theory and Practice

20

TABLE-BASED CONSTRUCTION DESIGN

» Extended Entry Decision Table (EEDT)

v Whereas the Condition and Action sections of LEDTs contain complete
questions and actions, the Condition and Action sections of the extended entry
decision table (EEDT) are extended into the Action Entry section.

v That is, in LEDTs, the Condition section contained information that could be
used to ask a complete questions, such as “is there a store discount in effect?”

v" In EEDT, the Condition and Condition Entry sections of the table are required
to formulate a complete question, such as “Is the customer a regular, preferred,
or VIP customer?”

v" Similarly, the Action section must be combined with the Action Entry section
of the decision table to formulate a complete action, such as “add a free car kit
to the purchase.”

v" In addition, the number of possible values for each condition and action in
EEDTs are not bounded to two.

Condition Condition Entry

Action Action Entry

10/24/2012 Software Engineering Design: Theory and Practice 21

TABLE-BASED CONSTRUCTION DESIGN

» Extended Entry Decision Table (EEDT) — Example

Get Phone Discount Pl P2 Pa P4 P5 P6
Customer Tvpe is REG REG PRE FRE VIP VIP
Credit Score 15 BAD GOOD BAD GOOD BAD GOOD
Discount 50 £15 10 25 £50 $100
BLUE CAR DATA | CARKIT &
Add a Free HOLSTER | CHARGER TOOTH KIT PLAN | DATAPLAN

» Notice that:
v" The number of possible values for each condition and action in EEDTS are not
bounded to two.
v" Therefore, the number of policies for EEDT is the product of the number of
possible values for each condition, denoted by H VoV XV XV
= Where c is the number of conditions il
= J1is the number of values for condition i.
v" In this example, the number of policies are 3 x 2 = 6.
= 3 different value types for Condition 1 (i.e., cutomer type is REG/PRE/VIP)
= 2 different value types for Condition 2 (i.e., credit score is GOOD/BAD)

10/24/2012 Software Engineering Design: Theory and Practice

22

TABLE-BASED CONSTRUCTION DESIGN

» Mixed Entry Decision Table (MEDT)
v" Combines LEDTs and EEDTs into one MEDT

= That is, conditions can be questions, with various answers or

= Binary features that are present or not (true or false).

: Simple Phone Advanced Special Phone
Get Phone Discount Policies Phone Policies Policies
P1|P2|P3|P4|P5 | P |P7 | PR P9 | PIO | P11 | P12
Phone Typeis S| 8| S| S|A|A|A|A|SP)|SP| 5P
Manufacturer Discount F|T|F|T|F|T|F|T]| F T F
Store Discount FIF|T|T|F|F|T|T F F T
$15 Discount X | x
$60 Discoumt x| x| x| x
£120 Discount % X X
£30 Manufacturer Discount X X
$50 Manufacturer Discount X X
$70 Manufacturer Discount X
Bluetooth Discount ($60) x| x
6 Month Data Discount (3180} X
No Discount ($0) X

10/24/2012 Software Engineering Design: Theory and Practice

TABLE-BASED CONSTRUCTION DESIGN

int getPheoneDiscount (const Phones phone) |

int totalDiscount = 0; // The total computer discount.

) . Simple Phone Advanced Special Phone
if(phone.getType() == SIMPLE_PHONE) | Get Phone Discount Ifolicies Phone Policies P Policies
if{ phone.getDiscountType () = MANUFACTURER DISCOUNT) | P1|P2|P3 | P4|P5(P6|P7|P8| PS | PIO) P11 | PI2
/¢ Bdd £30 manufacturer's discount teo totalDiscount. Phone Type is S| S| S| S|A|A|A|A|SP|SP SP SP
}l £ ph o; Type () STORE DISCOMT) | Manufacturer Discount F|T|F|T|F|T|F|T]|F T F T
else if({ phcne.getDiscountType == § . DIS]
// Bdd $£15 store discount to totalDiscount. Stt{reDlscount FIF T T FIFIT|T F F T T
} £15 Discount X | x
else if(phone.getDiscountType() == COMBINED DISCOUNT | { $60 Discount x| x|=x|=x
J/f Bdd £30 and $15 te totalDiscount. £120 Discount X X X X
! y) $30 Manufacturer Discount X X
?lse /7 Ve discount. $50 Manufacturer Discount X X
] £70 Manufacturer Discount x X
else if(phone.getType() == ADVANCED PHONE) { Bluetooth Discount ($60) E
6 Month Data Discount ($180) X X
/f Rdd $60 default advanced phone discount to totalDiscount. No Discount ($0} x
if{ phone.getDiscountType (] == MANUFACTUREE_DISCOUNT) { ,4
/f Rdd additional #5350 manufacturer's discount teo totalDiscount. /
! ;
else if({ phcone.getDiscountType() == STOBE DISCOUNT) | :\
// Bdd additional Bluetooth ear piece discount (560) to N
// totalDiscount. \\
i N\
elgse if({ phcone.getDiscountType () == COMBINED DISCOUNT) | /'
/¢ Bdd additicnal £50 and $60 to totalDiscount. e
1 -
else { // No additicnal discount. TMCSC are
. - equivalent!
else if{ phone.getType() == SPFECIAL PFHONE) | //
S/ Bdd $§120 default special phcone discocunt to totallDiscount. ,"
if{ phone.getDiscountType (] == MANUFACTUREE_DISCOUNT) { ,/,
// Rdd additicnal £70 manufacturer's discount te teotalDisccunt.
i
else if(phone.getDiscountType() == STORE DISCOUNT) |
/¢ Rdd additicnal & menth data plan discount ($130). Thﬂt ‘s LOt O_lC GOI/LD“:tI:DVLﬂLStatCWLCV\,tS'
! !
else if({ phcne.getDigscountType () == COMBEINED DISCOUNT) | LCt'S see l’lOW WEe can LC\/CVﬂ@C thablle-
/¢ A additiecnal £70 and $130 to teotalDiscount. , ,
based construction to reduce complexity...

elae { // Mo additicnal discount.

!

return totalDiscount; // Beturn the cecmputed phone discount.

10/24/2012 Software Engineering Design: Theory and Practice

TABLE-BASED CONSTRUCTION DESIGN

» Table-based designs lead to efficient construction that has significant lower

complexity.
gtruct Discounts
int smallStoreDiscount; S/ For this example, it should be 215.
int mediumStoreDiscount; S/ For this example, it should be 2&0.
int highStoreDiscount; S/ For this example, it should be 2120.

int smallManufacturerDiscount; f/ For this example, it should be 530.
int mediumManufacturerDiscount; /S For thisz example, it should be 550.

int highManufacturerDiscount; S/ For this example, it should be £70.
int bluetoothDiscount; S/ For this example, it should be £&0.
int dataPlanDiscount; S/ For this example, it should be £180.
3 Move the complexity of

the pre\/’wus conditional

S/ The discounts available for simple phones (5IM), advanced phones (ADV), ~ statements to a table!

S/ and special phones (SPE), all accessible via discount keys (DEF). ;
Discounts discounts[] = { !
{ 0o, 0, 0, 0, 0, 0, 0, O v, // DEO, SIM/ No dizcounts. {
o, &0, 0o, 0, 0, 0, 0, O y, ff DEl, ADV/ Store's default discount.
o, 0, 120, 0O, 0, O, 0, O ¥, ff DEZ, SPE/ 5tore's default discount.
o, 4, o, 30, 0, 0, 0, O ¥, S/ DE3, 5IM/ Manufacturer's discount. ;
o, &3, 0, 0, %0, 0, 0, O Y, /S DE4, ADV/ Manufacturer's discount. ‘/
o, o, 120, ©, ©, 70, 0, O }, S/ DES, SPE/ Manufacturer's discount. <
i5, o, ©, o, o, 4, 0, O v, S/ DE&, S5IM/ Special store discount.
o, €0, O, O, O, O, &0, O Y, S/ DE7, ADV/ Default & =spec. =store disc.
o, o, 120, O, O, O, O, 180 v, S/ DE8, SPE/ Default & =spec. store disc.
i, o, o, 30, 0, 0, 0, O y, /S DES, S5IM/S 211 applicable discounts.
o, &3, o, 0, 50, 0, 60, O ¥, /S DE10, ADV/ A1l applicable discounts.
o, o, 120, 0, 0, 70, O, 180 } // D11, SPE/ Rll applicable disc.

10/24/2012 Software Engineering Design: Theory and Practice 25

TABLE-BASED CONSTRUCTION DESIGN

f{ The table-bhased werzion for retrieving discounts.

int getPhonelDiscount | const Phone& phone)

Compute the discount Veeg!

/
i
'
'
'
'
'
1
1
'
|
'

1
!
’

S/ Compute the key for accessing the corresponding table row.

int discountEey = phone.getType ()

+ phone.getDiscountType (] ;

S/ Rdd all discounts associated with the discount key.

int totalDliscount = discounts]|
discounts|
discounts=
discounts

dizcounts|
[dizcountEey].
dizcountEey] .
.dataPlanDiscount;

discounts

diszcounts [
[discountEey]

discounts

S Beturn the total diszcount.
return totalDiscount;

[diszcountEey]
[dizcountEey].
TOedivmManufacturerDi

dizcountEey] .
dizcountEey]

dizcountEey]

smallStorelDiscount +
gediuvmStoreDiscount +
JhighStoreDiscount +

Since we moved the complexity of the

previous conditional statements to a

table, all we have to do wow to retrieve
the discount Ls\ Rey into the table!

/
/
s

smallManufacturerDiscount + J

scount + <

highManufacturerDiscount +

bluetoothDiscount +

J/f Create a simple phone with manufacturer's discount.
Fhone phone (SIMFLE PHONE, MANUFACTURER DISCOUNT)

J/ Display the phone's discount.

cout<<"Total Phone Discount: "<<getPhoneDiscount| phone }<<endl:;

10/24/2012 Software Engineering Design: Theory and Practice

26

TABLE-BASED CONSTRUCTION DESIGN

int getPheneDiscecunt {ccnst Pheones phone) |

int totalDiscount = 0; // The total computer discount.

if{ phone.getType() == SIMPLE_PHONE | |

if{ phone.getDiscountType () == MANUFACTURER DISCOUNT) |
/¢ Rdd £30 manufacturer's discount to totalDiscount.

i

elge if{ phone.getDiscountType() == STOEE DISCOUNT) |
Jf Bdd §15 store discount to totalDiscount.

i

elge if{ phone.getDiscountType() == COMBINED DISCOUNT) {

/f Bdd $30 and #15 to totalDiscount.

H
else [// No discount.

i
elae if(phone.getType() == ADVANCED PHOME) |
S/ Bdd £60 default advanced phone disceount to totalDisccunt.

if{ phone.getDiscountType () == MANUFACTURER DISCOUNT) |

4/ Bdd additiconal £50 manufacturer's disccunt tc totalDiscount.

i

else if{ phone.getDiscountType({) == STORE DISCCUNT) {
// Rdd additional Bluetooth ear piece discount ($60) to
// totalDiscount.

i
else if{ phone.getDiscountType() == COMBINED DISCOUNT) {
// Rdd additicnal $50 and $60 to totalDiscount.

else { // Nec additicnal discount.)
1 L
elae if(phone.getType() == SPECIAL PHONE) {

£/ Bdd 5120 default special phcone disccount to totalDiscount.

if{ phone.getDiscountType () == MANUFACTURER DISCOUNT) |

4/ Bhdd additiconal £70 manufacturer's discount to totalDiscount.

else if{ phone.getDiscountType({) == STORE DISCCUNT) {
// RBdd additicnal & month data plan discount ($180).

i

else if{ phone.getDiscountType() == COMBINED DISCOUNT) {
// B additicnal #70 and $130 to totalliscount.

i

else { // Nec additicnal discount.

i

}

return totalDiscount; // Return the computed phone discount.

—-equivalent!

. Simple Phone Advanced Special Phone
Get Phone Discount Policies Phone Policies Policies

P1|{P2|P3|P4|P5|Po|P7|PB| P9 | P1O| P11 | P12
Phone Type is S| S| S|S|A|A|A|A|SP| 5P SP SP
Manufacturer Discount F|T|F|T|F|T|F|T]| F T F T
Store Discount F|F|T|T|F|F|T|T F F T T
§15 Discount X | x
£60 Discount x| x| x| x
£120 Discount X x X X
$30 Manufacturer Discount x x
$50 Manufacturer Discount X X
£70 Manufacturer Discount x X
Bluetooth Discount ($60) x| x
6 Month Data Discount ($180) X X
No Discount ($0) x

These are

// The table-kbased version for retrieving discounts.
N int getPhoneDiscount | const Phone& phone) {

/ // Compute the key for accessing the corresponding table row.
! int discountEey = phone.getIype() + phone.getDiscountType ()

‘\ // BAdd all discounts associated with the discount key.
S int totalDiscount = discounts[discountEey] .smallStoreDiscount +
> discounts] -mediumStoreDiscount +
discounts] -highStoreDiscount +
discounts] -smallManufacturerDiscount +
discounts] smediumManufacturerDiscount +
] -highManufacturerDiscount +

discounts
discounts] -bluetoothDiscount +

dizcounts [discountEey] .dataPlanDiscount;

// Beturn the total discount.
return totalDiscount;

A // Create a =imple phone with manufacturer's discount.
’ Fhone phone (SIMPLE PHONE, MANUFACTURER _DISCOUNT):

NDtLGC l’lOW much S!:VM,’PI,CY tl/lll,s \\\ J// Display the phone's discount.
, "<<getPhoneDiscount (phone })<<endl;
version of the code Looks! -~

- cout<<"Total Phone Discount:

10/24/2012 Software Engineering Design: Theory and Practice

27

WHAT’S NEXT...

» In this session, we presented construction design from the algorithmic
viewpoint, including:
v" Flow-based design
v’ State-based design
v' Table-based design

» In the next session, we will discuss another form of algorithmic design at

the construction level, the Programming Design Language (PDL). We will

also focuses on the stylistic view of construction design and on quality
evaluation at the construction level.

10/24/2012 Software Engineering Design: Theory and Practice

28

REFERENCES

» [1]IEEE. “IEEE Standard for Information Technology-Systems DESIGN-
Software Design Descriptions.” 2009, p. 175.

» [2] Collar, Emilio Jr. “An Investigation of Programming Code Textbase
Readability Based on a Cognitive Readability Model.” PhD thesis,
University of Colorado at Boulder, 2005.

» [3] Hurley, Richard B. Decision Tables in Software Engineering. New
York: Van Nostrand Reinhold, 1982.

10/24/2012 Software Engineering Design: Theory and Practice

29

